基于上下文相关树的语音识别变换

Bernard Doherty, S. Vaseghi, P. McCourt
{"title":"基于上下文相关树的语音识别变换","authors":"Bernard Doherty, S. Vaseghi, P. McCourt","doi":"10.21437/ICSLP.1998-645","DOIUrl":null,"url":null,"abstract":"This paper presents a novel method for modeling phonetic context using linear context transforms. Initial investigations have shown the feasibility of synthesising context dependent models from context independent models through weighted interpolation of the peripheral states of a given hidden markov model with its adjacent model. This idea can be further extended, to maximum likelihood estimation of not only single weights, but a matrix of weights or a transform. This paper outlines the application of Maximum Likelihood Linear Regression (MLLR) as a means of modeling context dependency in continuous density Hidden Markov Models (HMM).","PeriodicalId":117113,"journal":{"name":"5th International Conference on Spoken Language Processing (ICSLP 1998)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Context dependent tree based transforms for phonetic speech recognition\",\"authors\":\"Bernard Doherty, S. Vaseghi, P. McCourt\",\"doi\":\"10.21437/ICSLP.1998-645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel method for modeling phonetic context using linear context transforms. Initial investigations have shown the feasibility of synthesising context dependent models from context independent models through weighted interpolation of the peripheral states of a given hidden markov model with its adjacent model. This idea can be further extended, to maximum likelihood estimation of not only single weights, but a matrix of weights or a transform. This paper outlines the application of Maximum Likelihood Linear Regression (MLLR) as a means of modeling context dependency in continuous density Hidden Markov Models (HMM).\",\"PeriodicalId\":117113,\"journal\":{\"name\":\"5th International Conference on Spoken Language Processing (ICSLP 1998)\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"5th International Conference on Spoken Language Processing (ICSLP 1998)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21437/ICSLP.1998-645\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"5th International Conference on Spoken Language Processing (ICSLP 1998)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/ICSLP.1998-645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于线性语境变换的语音语境建模方法。初步研究表明,通过对给定隐马尔可夫模型的外围状态与其相邻模型进行加权插值,可以从上下文独立模型合成上下文相关模型。这个思想可以进一步推广,不仅可以对单个权值进行极大似然估计,还可以对权值矩阵或变换进行极大似然估计。本文概述了极大似然线性回归(MLLR)作为连续密度隐马尔可夫模型(HMM)中上下文依赖性建模方法的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Context dependent tree based transforms for phonetic speech recognition
This paper presents a novel method for modeling phonetic context using linear context transforms. Initial investigations have shown the feasibility of synthesising context dependent models from context independent models through weighted interpolation of the peripheral states of a given hidden markov model with its adjacent model. This idea can be further extended, to maximum likelihood estimation of not only single weights, but a matrix of weights or a transform. This paper outlines the application of Maximum Likelihood Linear Regression (MLLR) as a means of modeling context dependency in continuous density Hidden Markov Models (HMM).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assimilation of place in Japanese and dutch Articulatory analysis using a codebook for articulatory based low bit-rate speech coding Phonetic and phonological characteristics of paralinguistic information in spoken Japanese HMM-based visual speech recognition using intensity and location normalization Speech recognition via phonetically featured syllables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1