F. Taher, A. Soliman, Heba Kandil, Ali M. Mahmoud, A. Shalaby, G. Gimel'farb, A. El-Baz
{"title":"脑血管精确分割","authors":"F. Taher, A. Soliman, Heba Kandil, Ali M. Mahmoud, A. Shalaby, G. Gimel'farb, A. El-Baz","doi":"10.1109/ICIP40778.2020.9191077","DOIUrl":null,"url":null,"abstract":"Analyzing cerebrovascular changes using Time-of-Flight Magnetic Resonance Angiography (ToF–MRA) images can detect the presence of serious diseases and track their progress, e.g., hypertension. Such analysis requires accurate segmentation of the vasculature from the surroundings, which motivated us to propose a fully automated cerebral vasculature segmentation approach based on extracting both prior and current appearance features that capture the appearance of macro and micro-vessels. The appearance prior is modeled with a novel translation and rotation invariant Markov-Gibbs Random Field (MGRF) of voxel intensities with pairwise interaction analytically identified from a set of training data sets, while the current appearance is represented with a marginal probability distribution of voxel intensities by using a Linear Combination of Discrete Gaussians (LCDG) whose parameters are estimated by a modified Expectation-Maximization (EM) algorithm. The proposed approach was validated on 190 data sets using three metrics, which revealed high accuracy compared to existing approaches.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precise Cerebrovascular Segmentation\",\"authors\":\"F. Taher, A. Soliman, Heba Kandil, Ali M. Mahmoud, A. Shalaby, G. Gimel'farb, A. El-Baz\",\"doi\":\"10.1109/ICIP40778.2020.9191077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analyzing cerebrovascular changes using Time-of-Flight Magnetic Resonance Angiography (ToF–MRA) images can detect the presence of serious diseases and track their progress, e.g., hypertension. Such analysis requires accurate segmentation of the vasculature from the surroundings, which motivated us to propose a fully automated cerebral vasculature segmentation approach based on extracting both prior and current appearance features that capture the appearance of macro and micro-vessels. The appearance prior is modeled with a novel translation and rotation invariant Markov-Gibbs Random Field (MGRF) of voxel intensities with pairwise interaction analytically identified from a set of training data sets, while the current appearance is represented with a marginal probability distribution of voxel intensities by using a Linear Combination of Discrete Gaussians (LCDG) whose parameters are estimated by a modified Expectation-Maximization (EM) algorithm. The proposed approach was validated on 190 data sets using three metrics, which revealed high accuracy compared to existing approaches.\",\"PeriodicalId\":405734,\"journal\":{\"name\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP40778.2020.9191077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9191077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analyzing cerebrovascular changes using Time-of-Flight Magnetic Resonance Angiography (ToF–MRA) images can detect the presence of serious diseases and track their progress, e.g., hypertension. Such analysis requires accurate segmentation of the vasculature from the surroundings, which motivated us to propose a fully automated cerebral vasculature segmentation approach based on extracting both prior and current appearance features that capture the appearance of macro and micro-vessels. The appearance prior is modeled with a novel translation and rotation invariant Markov-Gibbs Random Field (MGRF) of voxel intensities with pairwise interaction analytically identified from a set of training data sets, while the current appearance is represented with a marginal probability distribution of voxel intensities by using a Linear Combination of Discrete Gaussians (LCDG) whose parameters are estimated by a modified Expectation-Maximization (EM) algorithm. The proposed approach was validated on 190 data sets using three metrics, which revealed high accuracy compared to existing approaches.