{"title":"面向自适应音乐人机协作的同步语法框架","authors":"Miguel Sarabia, Kyuhwa Lee, Y. Demiris","doi":"10.1109/ROMAN.2015.7333649","DOIUrl":null,"url":null,"abstract":"We present an adaptive musical collaboration framework for interaction between a human and a robot. The aim of our work is to develop a system that receives feedback from the user in real time and learns the music progression style of the user over time. To tackle this problem, we represent a song as a hierarchically structured sequence of music primitives. By exploiting the sequential constraints of these primitives inferred from the structural information combined with user feedback, we show that a robot can play music in accordance with the user's anticipated actions. We use Stochastic Context-Free Grammars augmented with the knowledge of the learnt user's preferences. We provide synthetic experiments as well as a pilot study with a Baxter robot and a tangible music table. The synthetic results show the synchronisation and adaptivity features of our framework and the pilot study suggest these are applicable to create an effective musical collaboration experience.","PeriodicalId":119467,"journal":{"name":"2015 24th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Towards a synchronised Grammars framework for adaptive musical human-robot collaboration\",\"authors\":\"Miguel Sarabia, Kyuhwa Lee, Y. Demiris\",\"doi\":\"10.1109/ROMAN.2015.7333649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an adaptive musical collaboration framework for interaction between a human and a robot. The aim of our work is to develop a system that receives feedback from the user in real time and learns the music progression style of the user over time. To tackle this problem, we represent a song as a hierarchically structured sequence of music primitives. By exploiting the sequential constraints of these primitives inferred from the structural information combined with user feedback, we show that a robot can play music in accordance with the user's anticipated actions. We use Stochastic Context-Free Grammars augmented with the knowledge of the learnt user's preferences. We provide synthetic experiments as well as a pilot study with a Baxter robot and a tangible music table. The synthetic results show the synchronisation and adaptivity features of our framework and the pilot study suggest these are applicable to create an effective musical collaboration experience.\",\"PeriodicalId\":119467,\"journal\":{\"name\":\"2015 24th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 24th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROMAN.2015.7333649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 24th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROMAN.2015.7333649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards a synchronised Grammars framework for adaptive musical human-robot collaboration
We present an adaptive musical collaboration framework for interaction between a human and a robot. The aim of our work is to develop a system that receives feedback from the user in real time and learns the music progression style of the user over time. To tackle this problem, we represent a song as a hierarchically structured sequence of music primitives. By exploiting the sequential constraints of these primitives inferred from the structural information combined with user feedback, we show that a robot can play music in accordance with the user's anticipated actions. We use Stochastic Context-Free Grammars augmented with the knowledge of the learnt user's preferences. We provide synthetic experiments as well as a pilot study with a Baxter robot and a tangible music table. The synthetic results show the synchronisation and adaptivity features of our framework and the pilot study suggest these are applicable to create an effective musical collaboration experience.