参考马山底谷地库地-塔尔地区微结构与变形的中央逆冲带精确定位与填图

Lokendra Pandeya, K. Paudyal
{"title":"参考马山底谷地库地-塔尔地区微结构与变形的中央逆冲带精确定位与填图","authors":"Lokendra Pandeya, K. Paudyal","doi":"10.3126/BDG.V22I0.33414","DOIUrl":null,"url":null,"abstract":"Geological mapping was carried out along Marsyangdi valley in the Khudi - Dahare -Tal area on a scale of 1: 50,000 covering about 142 square kilometers. Recent study aims to locate the Main Central Thrust (MCT) precisely based on lithostratigraphy, micro-structures, deformation, and metamorphism. Several thin sections were observed to study the metamorphism, deformation, and micro-structures developed in the rocks. The rocks sequences in both the Higher Himalaya and the Lesser Himalaya have undergone polyphase metamorphism and deformation. The Lesser Himalaya experienced first burial metamorphism (M1) followed by garnet grade inverted metamorphism related to the MCT activity (M2) followed by retrograde metamorphism (M3) whereas the Higher Himalaya has undergone regional high-pressure/ high-temperature kyanite/ sillimanite- grade prograde regional metamorphism (M1) followed by the (M2) related to ductile sharing which in turn is overprinted by the later post-tectonic retrograde garnet to chlorite grade metamorphism during exhumation. The polyphase deformation is indicated by the cross-cutting foliation and many other features. The deformation phase D1 is associated with the development of the bedding parallel foliation due to burial in both the Higher Himalaya and the Lesser Himalaya. Isoclinal folds and crenulation cleavage were developed before the collision is categorized as D2. Development of nearly N- S trending mineral and stretching lineation, south vergent drag folds, folded S2 cleavage and microscopic shear sense indicators, rotated syn- tectonic garnet grains, etc. were developed during the deformation D3 related to the ductile shearing through the MCT. Various brittle faults and shear zones cross-cutting all earlier features were developed during D4 during the upheaval. The rocks in the MCT zone are affected by intense sharing and mylonitization as indicated by the presence of many mylonitic structures in the thin sections throughout the Lesser Himalaya in the area. Features like polygonization and ribbon quartz with evidence of sub-grain rotation, mica fish, syn-tectonic rotated garnet grains indicate the ductile shearing in the MCT area suggesting the dynamic recrystallization in the MCT zone whereas rocks of the Higher Himalaya show the evidence of recrystallization under static condition. The MCT zone was mapped precisely based on the microstructures and deformation.","PeriodicalId":356325,"journal":{"name":"Bulletin of The Department of Geology","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precise Location and Mapping of the Main Central Thrust Zone in Reference to Micro-Structures and Deformation along Khudi-Tal Area of Marsyangdi Valley\",\"authors\":\"Lokendra Pandeya, K. Paudyal\",\"doi\":\"10.3126/BDG.V22I0.33414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geological mapping was carried out along Marsyangdi valley in the Khudi - Dahare -Tal area on a scale of 1: 50,000 covering about 142 square kilometers. Recent study aims to locate the Main Central Thrust (MCT) precisely based on lithostratigraphy, micro-structures, deformation, and metamorphism. Several thin sections were observed to study the metamorphism, deformation, and micro-structures developed in the rocks. The rocks sequences in both the Higher Himalaya and the Lesser Himalaya have undergone polyphase metamorphism and deformation. The Lesser Himalaya experienced first burial metamorphism (M1) followed by garnet grade inverted metamorphism related to the MCT activity (M2) followed by retrograde metamorphism (M3) whereas the Higher Himalaya has undergone regional high-pressure/ high-temperature kyanite/ sillimanite- grade prograde regional metamorphism (M1) followed by the (M2) related to ductile sharing which in turn is overprinted by the later post-tectonic retrograde garnet to chlorite grade metamorphism during exhumation. The polyphase deformation is indicated by the cross-cutting foliation and many other features. The deformation phase D1 is associated with the development of the bedding parallel foliation due to burial in both the Higher Himalaya and the Lesser Himalaya. Isoclinal folds and crenulation cleavage were developed before the collision is categorized as D2. Development of nearly N- S trending mineral and stretching lineation, south vergent drag folds, folded S2 cleavage and microscopic shear sense indicators, rotated syn- tectonic garnet grains, etc. were developed during the deformation D3 related to the ductile shearing through the MCT. Various brittle faults and shear zones cross-cutting all earlier features were developed during D4 during the upheaval. The rocks in the MCT zone are affected by intense sharing and mylonitization as indicated by the presence of many mylonitic structures in the thin sections throughout the Lesser Himalaya in the area. Features like polygonization and ribbon quartz with evidence of sub-grain rotation, mica fish, syn-tectonic rotated garnet grains indicate the ductile shearing in the MCT area suggesting the dynamic recrystallization in the MCT zone whereas rocks of the Higher Himalaya show the evidence of recrystallization under static condition. The MCT zone was mapped precisely based on the microstructures and deformation.\",\"PeriodicalId\":356325,\"journal\":{\"name\":\"Bulletin of The Department of Geology\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of The Department of Geology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3126/BDG.V22I0.33414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of The Department of Geology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3126/BDG.V22I0.33414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

沿着Khudi - Dahare - tal地区的Marsyangdi山谷进行了地质测绘,比额为1:50 000,覆盖约142平方公里。近年来的研究旨在根据岩石地层学、微观构造、变形和变质作用精确定位中央逆冲构造。观察了几个薄片,研究了岩石的变质作用、变形和微观结构。上喜马拉雅和下喜马拉雅的岩石层序均经历了多期变质和变形作用。小喜马拉雅经历了第一次埋藏变质作用(M1),然后是与MCT活动有关的石榴石级反向变质作用(M2),然后是逆行变质作用(M3),而上喜马拉雅经历了区域性高压/高温蓝晶石/硅线石级渐进区域变质作用(M1),然后是与韧性共享有关的(M2),并在此期间叠加了后期构造后的逆行石榴石到绿泥石级变质作用发掘。多相变形表现为横切面理等特征。变形阶段D1与上喜马拉雅和下喜马拉雅地区由于埋藏作用而形成的层理平行片理发育有关。在碰撞被归类为D2之前,已经发育了等斜褶皱和砾岩解理。在与MCT韧性剪切相关的D3变形过程中,发育了近N- S走向的矿物和伸展线理、南向的拖曳褶皱、褶皱的S2解理和微观剪切感指示、旋转的同构造石榴石颗粒等。东4期发育了各种脆性断裂和剪切带,这些断裂和剪切带横切了所有早期特征。MCT带的岩石受到强烈的共享和糜棱岩化作用的影响,在整个小喜马拉雅地区的薄片中存在许多糜棱岩化构造。具有亚粒旋转证据的多角化和带状石英、云母鱼、同构造旋转的石榴石颗粒等特征表明MCT区域的韧性剪切表明MCT区域的动态再结晶,而高喜马拉雅地区的岩石则显示静态条件下的再结晶。基于显微组织和变形对MCT区域进行了精确的定位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Precise Location and Mapping of the Main Central Thrust Zone in Reference to Micro-Structures and Deformation along Khudi-Tal Area of Marsyangdi Valley
Geological mapping was carried out along Marsyangdi valley in the Khudi - Dahare -Tal area on a scale of 1: 50,000 covering about 142 square kilometers. Recent study aims to locate the Main Central Thrust (MCT) precisely based on lithostratigraphy, micro-structures, deformation, and metamorphism. Several thin sections were observed to study the metamorphism, deformation, and micro-structures developed in the rocks. The rocks sequences in both the Higher Himalaya and the Lesser Himalaya have undergone polyphase metamorphism and deformation. The Lesser Himalaya experienced first burial metamorphism (M1) followed by garnet grade inverted metamorphism related to the MCT activity (M2) followed by retrograde metamorphism (M3) whereas the Higher Himalaya has undergone regional high-pressure/ high-temperature kyanite/ sillimanite- grade prograde regional metamorphism (M1) followed by the (M2) related to ductile sharing which in turn is overprinted by the later post-tectonic retrograde garnet to chlorite grade metamorphism during exhumation. The polyphase deformation is indicated by the cross-cutting foliation and many other features. The deformation phase D1 is associated with the development of the bedding parallel foliation due to burial in both the Higher Himalaya and the Lesser Himalaya. Isoclinal folds and crenulation cleavage were developed before the collision is categorized as D2. Development of nearly N- S trending mineral and stretching lineation, south vergent drag folds, folded S2 cleavage and microscopic shear sense indicators, rotated syn- tectonic garnet grains, etc. were developed during the deformation D3 related to the ductile shearing through the MCT. Various brittle faults and shear zones cross-cutting all earlier features were developed during D4 during the upheaval. The rocks in the MCT zone are affected by intense sharing and mylonitization as indicated by the presence of many mylonitic structures in the thin sections throughout the Lesser Himalaya in the area. Features like polygonization and ribbon quartz with evidence of sub-grain rotation, mica fish, syn-tectonic rotated garnet grains indicate the ductile shearing in the MCT area suggesting the dynamic recrystallization in the MCT zone whereas rocks of the Higher Himalaya show the evidence of recrystallization under static condition. The MCT zone was mapped precisely based on the microstructures and deformation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tectonic Stress Analysis of Shivnath-Salena Area, Using Stress Response Structure A Comparison of Statistical Validity of In-Situ Hydraulic Conductivity Prediction Models of Rock Mass Inferred from Borehole Logs and Lugeon Test Data Water Management in Hariwan Municipality of Nepal: Groundwater Harvesting from Riverbeds and Aquifers Study on Rock Characteristics for Assessing the Hydraulic Erodibility of Sandstones in the Manahari River Section, Sub-Himalaya, Central Nepal Recent Trends in the Study of Springs in Nepal: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1