解耦体系结构的编译和优化

N. Topham, A. Rawsthorne, Callum McLean, M. Mewissen, Peter L. Bird
{"title":"解耦体系结构的编译和优化","authors":"N. Topham, A. Rawsthorne, Callum McLean, M. Mewissen, Peter L. Bird","doi":"10.1145/224170.224301","DOIUrl":null,"url":null,"abstract":"Decoupled architectures provide a key to the problem of sustained supercomputer performance through their ability to hide large memory latencies. When a program executes in a decoupled mode the perceived memory latency at the processor is zero; effectively the entire physical memory has an access time equivalent to the processor's register file, and latency is completely hidden. However, the asynchronous functional units within a decoupled architecture must occasionally synchronize, incurring a high penalty. The goal of compiling and optimizing for decoupled architectures is to partition the program between the asynchronous functional units in such a way that latencies are hidden but synchronization events are executed infrequently. This paper describes a model for decoupled compilation, and explains the effectiveness of compilation for decoupled systems. A number of new compiler optimizations are introduced and evaluated quantitatively using the Perfect Club scientific benchmarks. We show that with a suitable repertiore of optimizations, it is possible to hide large latencies most of the time for most of the programs in the Perfect Club.","PeriodicalId":269909,"journal":{"name":"Proceedings of the IEEE/ACM SC95 Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Compiling and Optimizing for Decoupled Architectures\",\"authors\":\"N. Topham, A. Rawsthorne, Callum McLean, M. Mewissen, Peter L. Bird\",\"doi\":\"10.1145/224170.224301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Decoupled architectures provide a key to the problem of sustained supercomputer performance through their ability to hide large memory latencies. When a program executes in a decoupled mode the perceived memory latency at the processor is zero; effectively the entire physical memory has an access time equivalent to the processor's register file, and latency is completely hidden. However, the asynchronous functional units within a decoupled architecture must occasionally synchronize, incurring a high penalty. The goal of compiling and optimizing for decoupled architectures is to partition the program between the asynchronous functional units in such a way that latencies are hidden but synchronization events are executed infrequently. This paper describes a model for decoupled compilation, and explains the effectiveness of compilation for decoupled systems. A number of new compiler optimizations are introduced and evaluated quantitatively using the Perfect Club scientific benchmarks. We show that with a suitable repertiore of optimizations, it is possible to hide large latencies most of the time for most of the programs in the Perfect Club.\",\"PeriodicalId\":269909,\"journal\":{\"name\":\"Proceedings of the IEEE/ACM SC95 Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE/ACM SC95 Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/224170.224301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE/ACM SC95 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/224170.224301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

解耦架构通过其隐藏大内存延迟的能力,为持续的超级计算机性能问题提供了一个关键。当程序以解耦模式执行时,处理器感知到的内存延迟为零;实际上,整个物理内存的访问时间相当于处理器的寄存器文件,并且延迟是完全隐藏的。然而,解耦体系结构中的异步功能单元必须偶尔同步,这将带来很高的代价。对解耦体系结构进行编译和优化的目标是在异步功能单元之间对程序进行分区,这样可以隐藏延迟,但不频繁地执行同步事件。本文描述了一个解耦编译模型,并解释了解耦系统编译的有效性。介绍了许多新的编译器优化,并使用Perfect Club科学基准对其进行了定量评估。通过适当的优化,我们可以在Perfect Club中的大多数程序中隐藏大部分时间的大延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Compiling and Optimizing for Decoupled Architectures
Decoupled architectures provide a key to the problem of sustained supercomputer performance through their ability to hide large memory latencies. When a program executes in a decoupled mode the perceived memory latency at the processor is zero; effectively the entire physical memory has an access time equivalent to the processor's register file, and latency is completely hidden. However, the asynchronous functional units within a decoupled architecture must occasionally synchronize, incurring a high penalty. The goal of compiling and optimizing for decoupled architectures is to partition the program between the asynchronous functional units in such a way that latencies are hidden but synchronization events are executed infrequently. This paper describes a model for decoupled compilation, and explains the effectiveness of compilation for decoupled systems. A number of new compiler optimizations are introduced and evaluated quantitatively using the Perfect Club scientific benchmarks. We show that with a suitable repertiore of optimizations, it is possible to hide large latencies most of the time for most of the programs in the Perfect Club.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Web Interface to Parallel Program Source Code Archetypes Parallel Implementations of the Power System Transient Stability Problem on Clusters of Workstations The Synergetic Effect of Compiler, Architecture, and Manual Optimizations on the Performance of CFD on Multiprocessors SCIRun: A Scientific Programming Environment for Computational Steering Surface Fitting Using GCV Smoothing Splines on Supercomputers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1