基于几何特性的蛋白质相似性搜索

S. Akbar, J. Küng, R. Wagner
{"title":"基于几何特性的蛋白质相似性搜索","authors":"S. Akbar, J. Küng, R. Wagner","doi":"10.1109/DEXA.2006.56","DOIUrl":null,"url":null,"abstract":"This paper discusses about several combinations of protein similarity measurement-methods, with respect to normalization, spatial partitions, geometrical properties, and distance metrics. We compare the effectiveness of possible combinations to each other. Our experiment shows that the feature based on fractional occupancy outperforms other methods. In addition, merging individual features might also yield good result. A prototype of 3D protein geometrical-similarity retrieval system is built for implementing our approach","PeriodicalId":282986,"journal":{"name":"17th International Workshop on Database and Expert Systems Applications (DEXA'06)","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Exploiting Geometrical Properties on Protein Similarity Search\",\"authors\":\"S. Akbar, J. Küng, R. Wagner\",\"doi\":\"10.1109/DEXA.2006.56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses about several combinations of protein similarity measurement-methods, with respect to normalization, spatial partitions, geometrical properties, and distance metrics. We compare the effectiveness of possible combinations to each other. Our experiment shows that the feature based on fractional occupancy outperforms other methods. In addition, merging individual features might also yield good result. A prototype of 3D protein geometrical-similarity retrieval system is built for implementing our approach\",\"PeriodicalId\":282986,\"journal\":{\"name\":\"17th International Workshop on Database and Expert Systems Applications (DEXA'06)\",\"volume\":\"160 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"17th International Workshop on Database and Expert Systems Applications (DEXA'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEXA.2006.56\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"17th International Workshop on Database and Expert Systems Applications (DEXA'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEXA.2006.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文讨论了几种蛋白质相似性测量方法的组合,包括归一化、空间划分、几何性质和距离度量。我们相互比较各种可能组合的有效性。我们的实验表明,基于分数占用的特征优于其他方法。此外,合并单个特征也可能产生良好的结果。为实现该方法,建立了一个三维蛋白质几何相似检索系统的原型
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploiting Geometrical Properties on Protein Similarity Search
This paper discusses about several combinations of protein similarity measurement-methods, with respect to normalization, spatial partitions, geometrical properties, and distance metrics. We compare the effectiveness of possible combinations to each other. Our experiment shows that the feature based on fractional occupancy outperforms other methods. In addition, merging individual features might also yield good result. A prototype of 3D protein geometrical-similarity retrieval system is built for implementing our approach
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visualization and Bayesian Nets to link Business Aims Interaction Styles for Service Discovery in Mobile Business Applications Service and Resource Discovery Using P2P An Integrity Semantics for Open World Databases Requirements on the Use of Goal-Directed Imitation for Self-Adaptation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1