{"title":"一种改进的高速永磁同步电机复矢量解耦控制","authors":"Feiyu Chen, Zihang Chen, Zhaokai Li, Xiaoyan Huang, Jian Zhang","doi":"10.1109/IEMDC47953.2021.9449489","DOIUrl":null,"url":null,"abstract":"The complex vector decoupling control (CVDC) can achieve complete decoupling when the proportional coefficient ($k_{p}$) and the integral coefficient ($k_{i}$) of the current loops meet a certain proportion. But in most occasions, the $k_{p}$ and $k_{i}$ are out of that proportion, leading to incomplete decoupling. Thus, an improved complex vector decoupling control (ICVDC) is proposed. Based on the traditional CVDC, the current compensation is introduced to improve decoupling performance. The simulation results demonstrate the effectiveness of this method. Furthermore, the system shows good dynamic response performance and strong robustness.","PeriodicalId":106489,"journal":{"name":"2021 IEEE International Electric Machines & Drives Conference (IEMDC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Improved Complex Vector Decoupling Control for high-speed PMSM\",\"authors\":\"Feiyu Chen, Zihang Chen, Zhaokai Li, Xiaoyan Huang, Jian Zhang\",\"doi\":\"10.1109/IEMDC47953.2021.9449489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The complex vector decoupling control (CVDC) can achieve complete decoupling when the proportional coefficient ($k_{p}$) and the integral coefficient ($k_{i}$) of the current loops meet a certain proportion. But in most occasions, the $k_{p}$ and $k_{i}$ are out of that proportion, leading to incomplete decoupling. Thus, an improved complex vector decoupling control (ICVDC) is proposed. Based on the traditional CVDC, the current compensation is introduced to improve decoupling performance. The simulation results demonstrate the effectiveness of this method. Furthermore, the system shows good dynamic response performance and strong robustness.\",\"PeriodicalId\":106489,\"journal\":{\"name\":\"2021 IEEE International Electric Machines & Drives Conference (IEMDC)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Electric Machines & Drives Conference (IEMDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMDC47953.2021.9449489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Electric Machines & Drives Conference (IEMDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMDC47953.2021.9449489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Improved Complex Vector Decoupling Control for high-speed PMSM
The complex vector decoupling control (CVDC) can achieve complete decoupling when the proportional coefficient ($k_{p}$) and the integral coefficient ($k_{i}$) of the current loops meet a certain proportion. But in most occasions, the $k_{p}$ and $k_{i}$ are out of that proportion, leading to incomplete decoupling. Thus, an improved complex vector decoupling control (ICVDC) is proposed. Based on the traditional CVDC, the current compensation is introduced to improve decoupling performance. The simulation results demonstrate the effectiveness of this method. Furthermore, the system shows good dynamic response performance and strong robustness.