人脸识别使用多光谱随机场纹理模型,颜色内容,和生物特征

O. Hernandez, Mitchell S. Kleiman
{"title":"人脸识别使用多光谱随机场纹理模型,颜色内容,和生物特征","authors":"O. Hernandez, Mitchell S. Kleiman","doi":"10.1109/AIPR.2005.28","DOIUrl":null,"url":null,"abstract":"Most of the available research on face recognition has been performed using gray scale imagery. This paper presents a novel two-pass face recognition system that uses a multispectral random field texture model, specifically the multispectral simultaneous auto regressive (MSAR) model, and illumination invariant color features. During the first pass, the system detects and segments a face from the background of a color image, and confirms the detection based on a statistically modeled skin pixel map and the elliptical nature of human faces. In the second pass, the face regions are located using the same image segmentation approach on a subspace of the original image, biometric information, and spatial relationships. The determined facial features are then assigned biometric values based on anthropometries, and a set of vectors is created to determine similarity in the facial feature space","PeriodicalId":130204,"journal":{"name":"34th Applied Imagery and Pattern Recognition Workshop (AIPR'05)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Face recognition using multispectral random field texture models, color content, and biometric features\",\"authors\":\"O. Hernandez, Mitchell S. Kleiman\",\"doi\":\"10.1109/AIPR.2005.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most of the available research on face recognition has been performed using gray scale imagery. This paper presents a novel two-pass face recognition system that uses a multispectral random field texture model, specifically the multispectral simultaneous auto regressive (MSAR) model, and illumination invariant color features. During the first pass, the system detects and segments a face from the background of a color image, and confirms the detection based on a statistically modeled skin pixel map and the elliptical nature of human faces. In the second pass, the face regions are located using the same image segmentation approach on a subspace of the original image, biometric information, and spatial relationships. The determined facial features are then assigned biometric values based on anthropometries, and a set of vectors is created to determine similarity in the facial feature space\",\"PeriodicalId\":130204,\"journal\":{\"name\":\"34th Applied Imagery and Pattern Recognition Workshop (AIPR'05)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"34th Applied Imagery and Pattern Recognition Workshop (AIPR'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2005.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"34th Applied Imagery and Pattern Recognition Workshop (AIPR'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2005.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

大多数现有的人脸识别研究都是使用灰度图像进行的。本文提出了一种利用多光谱随机场纹理模型,特别是多光谱同时自动回归(MSAR)模型和光照不变颜色特征的双通道人脸识别系统。在第一步中,系统从彩色图像的背景中检测和分割人脸,并基于统计建模的皮肤像素图和人脸的椭圆性质来确认检测。在第二步中,使用相同的图像分割方法在原始图像的子空间、生物特征信息和空间关系上定位人脸区域。然后根据人体测量为确定的面部特征分配生物特征值,并创建一组向量来确定面部特征空间中的相似性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Face recognition using multispectral random field texture models, color content, and biometric features
Most of the available research on face recognition has been performed using gray scale imagery. This paper presents a novel two-pass face recognition system that uses a multispectral random field texture model, specifically the multispectral simultaneous auto regressive (MSAR) model, and illumination invariant color features. During the first pass, the system detects and segments a face from the background of a color image, and confirms the detection based on a statistically modeled skin pixel map and the elliptical nature of human faces. In the second pass, the face regions are located using the same image segmentation approach on a subspace of the original image, biometric information, and spatial relationships. The determined facial features are then assigned biometric values based on anthropometries, and a set of vectors is created to determine similarity in the facial feature space
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive confidence level assignment to segmented human face regions for improved face recognition Segmentation approach and comparison to hyperspectral object detection algorithms A rate distortion method for waveform design in RF image formation Automatic inspection system using machine vision 3D scene modeling using sensor fusion with laser range finder and image sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1