利用U-Net进行干涉型合成孔径雷达信号预处理

P. Serafimovich, A. Dzyuba, S. Khonina, S. Popov
{"title":"利用U-Net进行干涉型合成孔径雷达信号预处理","authors":"P. Serafimovich, A. Dzyuba, S. Khonina, S. Popov","doi":"10.1117/12.2631723","DOIUrl":null,"url":null,"abstract":"Synthetic Aperture Radar (SAR) interferometry is an active remote sensing technology that uses microwaves to characterize the earth's surface. SAR interferometry allows to measure the 3D profile of the earth's surface, recover surface topography, and determine topographic displacements over time. The microwave SAR signal is usually highly distorted. Distortions can be caused by, for example, atmospheric disturbances and various characteristics of earth's surface scatterers reflectance. Compensation for these distortions is performed by filtering the phase and evaluating the degree of coherence of the original images. This is an important step to improve the accuracy of the subsequent pphase-unwrapping operation. In this paper, we investigate the use of U-net neural networks for preprocessing the SAR interferogram at various parameters of the distortion of the SAR signal. Two neural networks filter the SAR interferogram and determine the degree of coherence, respectively.","PeriodicalId":424251,"journal":{"name":"Optical Technologies for Telecommunications","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using U-Net for signal preprocessing in interferometric synthetic aperture radar\",\"authors\":\"P. Serafimovich, A. Dzyuba, S. Khonina, S. Popov\",\"doi\":\"10.1117/12.2631723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthetic Aperture Radar (SAR) interferometry is an active remote sensing technology that uses microwaves to characterize the earth's surface. SAR interferometry allows to measure the 3D profile of the earth's surface, recover surface topography, and determine topographic displacements over time. The microwave SAR signal is usually highly distorted. Distortions can be caused by, for example, atmospheric disturbances and various characteristics of earth's surface scatterers reflectance. Compensation for these distortions is performed by filtering the phase and evaluating the degree of coherence of the original images. This is an important step to improve the accuracy of the subsequent pphase-unwrapping operation. In this paper, we investigate the use of U-net neural networks for preprocessing the SAR interferogram at various parameters of the distortion of the SAR signal. Two neural networks filter the SAR interferogram and determine the degree of coherence, respectively.\",\"PeriodicalId\":424251,\"journal\":{\"name\":\"Optical Technologies for Telecommunications\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Technologies for Telecommunications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2631723\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Technologies for Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2631723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

合成孔径雷达(SAR)干涉测量是一种利用微波来表征地球表面特征的主动式遥感技术。SAR干涉测量允许测量地球表面的三维轮廓,恢复表面地形,并确定地形位移随时间的变化。微波SAR信号通常是高度失真的。例如,大气扰动和地球表面散射体反射率的各种特性可引起畸变。通过滤波相位和评估原始图像的相干度来补偿这些畸变。这是提高后续阶段展开操作准确性的重要一步。在本文中,我们研究了使用U-net神经网络对SAR干涉图在SAR信号畸变的不同参数下进行预处理。两个神经网络分别过滤SAR干涉图并确定相干度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using U-Net for signal preprocessing in interferometric synthetic aperture radar
Synthetic Aperture Radar (SAR) interferometry is an active remote sensing technology that uses microwaves to characterize the earth's surface. SAR interferometry allows to measure the 3D profile of the earth's surface, recover surface topography, and determine topographic displacements over time. The microwave SAR signal is usually highly distorted. Distortions can be caused by, for example, atmospheric disturbances and various characteristics of earth's surface scatterers reflectance. Compensation for these distortions is performed by filtering the phase and evaluating the degree of coherence of the original images. This is an important step to improve the accuracy of the subsequent pphase-unwrapping operation. In this paper, we investigate the use of U-net neural networks for preprocessing the SAR interferogram at various parameters of the distortion of the SAR signal. Two neural networks filter the SAR interferogram and determine the degree of coherence, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental researches and testing of silica twisted six-GeO2-doped core microstructured optical fiber. Part I: fusion splicing with telecommunication optical fibers and differential mode delay map measurements Silica microstructured optical fiber with centralized inclusion of seven GeO2-doped capillaries and induced twisting. Part II: test and research Student association for specialists in fiber optics and photonics Testing ground for approbation of the methods for fiber-optic communication line trace location OLT virtualization in 5G networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1