{"title":"基于MoM/BI-RME方法的厚金属贴片印刷周期结构建模","authors":"M. Bozzi, M. Montagna, L. Perregrini","doi":"10.1109/MWSYM.2010.5518166","DOIUrl":null,"url":null,"abstract":"This paper presents a novel technique for the accurate modeling of printed periodic structures with thick metal patches. These structures include capacitive frequency selective surfaces (FSS) and metallo-dielectric electromagnetic band-gap (EBG) structures, and are typically modeled under the hypothesis of infinitely thin metal patches. Nevertheless, taking into account the finite thickness of the patches allows for a more accurate modeling, especially at mm-wave frequency, as well as for a better evaluation of conductor losses. The analysis technique proposed in this paper is based on the MoM/BI-RME method and permits to obtain an accurate and computationally efficient modeling tool. A validation example is reported in the case of a capacitive FSS and is compared to the results obtained with a commercial full-wave electromagnetic software.","PeriodicalId":341557,"journal":{"name":"2010 IEEE MTT-S International Microwave Symposium","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Modeling of printed periodic structures with thick metal patches by the MoM/BI-RME method\",\"authors\":\"M. Bozzi, M. Montagna, L. Perregrini\",\"doi\":\"10.1109/MWSYM.2010.5518166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel technique for the accurate modeling of printed periodic structures with thick metal patches. These structures include capacitive frequency selective surfaces (FSS) and metallo-dielectric electromagnetic band-gap (EBG) structures, and are typically modeled under the hypothesis of infinitely thin metal patches. Nevertheless, taking into account the finite thickness of the patches allows for a more accurate modeling, especially at mm-wave frequency, as well as for a better evaluation of conductor losses. The analysis technique proposed in this paper is based on the MoM/BI-RME method and permits to obtain an accurate and computationally efficient modeling tool. A validation example is reported in the case of a capacitive FSS and is compared to the results obtained with a commercial full-wave electromagnetic software.\",\"PeriodicalId\":341557,\"journal\":{\"name\":\"2010 IEEE MTT-S International Microwave Symposium\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE MTT-S International Microwave Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSYM.2010.5518166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE MTT-S International Microwave Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2010.5518166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling of printed periodic structures with thick metal patches by the MoM/BI-RME method
This paper presents a novel technique for the accurate modeling of printed periodic structures with thick metal patches. These structures include capacitive frequency selective surfaces (FSS) and metallo-dielectric electromagnetic band-gap (EBG) structures, and are typically modeled under the hypothesis of infinitely thin metal patches. Nevertheless, taking into account the finite thickness of the patches allows for a more accurate modeling, especially at mm-wave frequency, as well as for a better evaluation of conductor losses. The analysis technique proposed in this paper is based on the MoM/BI-RME method and permits to obtain an accurate and computationally efficient modeling tool. A validation example is reported in the case of a capacitive FSS and is compared to the results obtained with a commercial full-wave electromagnetic software.