基于改进YOLO v3的复杂场景目标识别算法

Yadong Wang, Jin Li, Ruocong Yang, Zexuan Wang, Yue Zhang
{"title":"基于改进YOLO v3的复杂场景目标识别算法","authors":"Yadong Wang, Jin Li, Ruocong Yang, Zexuan Wang, Yue Zhang","doi":"10.1109/ICCSSE52761.2021.9545150","DOIUrl":null,"url":null,"abstract":"YOLO v3 is widely used in industry because of its high detection accuracy and speed, but there is a problem that it can only output accurate position coordinates and cannot predict the localization uncertainty of bbox. To solve this problem, an improved YOLO v3 algorithm is proposed. By increasing the output of position parameters and predicting localization uncertainty of bbox with Gaussian modeling to remove the boxes with high bbox uncertainty in the detection process. A new Localization loss function is designed on the basis of increasing the output of bbox coordinates. Batch Normalization layer and Convolution layer are combined to reduce the use of video memory space and improve network performance. The experimental results show that the mAP50 of the improved YOLO v3 algorithm in the helmet wearing test set is improved by 7.99%.","PeriodicalId":143697,"journal":{"name":"2021 IEEE 7th International Conference on Control Science and Systems Engineering (ICCSSE)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Object Recognition Algorithm for Complex Scenes Based on Improved YOLO v3\",\"authors\":\"Yadong Wang, Jin Li, Ruocong Yang, Zexuan Wang, Yue Zhang\",\"doi\":\"10.1109/ICCSSE52761.2021.9545150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"YOLO v3 is widely used in industry because of its high detection accuracy and speed, but there is a problem that it can only output accurate position coordinates and cannot predict the localization uncertainty of bbox. To solve this problem, an improved YOLO v3 algorithm is proposed. By increasing the output of position parameters and predicting localization uncertainty of bbox with Gaussian modeling to remove the boxes with high bbox uncertainty in the detection process. A new Localization loss function is designed on the basis of increasing the output of bbox coordinates. Batch Normalization layer and Convolution layer are combined to reduce the use of video memory space and improve network performance. The experimental results show that the mAP50 of the improved YOLO v3 algorithm in the helmet wearing test set is improved by 7.99%.\",\"PeriodicalId\":143697,\"journal\":{\"name\":\"2021 IEEE 7th International Conference on Control Science and Systems Engineering (ICCSSE)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 7th International Conference on Control Science and Systems Engineering (ICCSSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSSE52761.2021.9545150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 7th International Conference on Control Science and Systems Engineering (ICCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSSE52761.2021.9545150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

YOLO v3由于检测精度高、速度快,在工业上得到了广泛的应用,但存在只能输出准确的位置坐标,无法预测bbox的定位不确定性的问题。为了解决这一问题,提出了一种改进的YOLO v3算法。通过增加位置参数的输出,利用高斯模型预测bbox的定位不确定性,去除检测过程中bbox不确定性高的盒子。在增加bbox坐标输出的基础上,设计了一种新的定位损失函数。将批处理归一化层和卷积层相结合,减少了视频存储空间的使用,提高了网络性能。实验结果表明,改进的YOLO v3算法在头盔磨损测试集中的mAP50提高了7.99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Object Recognition Algorithm for Complex Scenes Based on Improved YOLO v3
YOLO v3 is widely used in industry because of its high detection accuracy and speed, but there is a problem that it can only output accurate position coordinates and cannot predict the localization uncertainty of bbox. To solve this problem, an improved YOLO v3 algorithm is proposed. By increasing the output of position parameters and predicting localization uncertainty of bbox with Gaussian modeling to remove the boxes with high bbox uncertainty in the detection process. A new Localization loss function is designed on the basis of increasing the output of bbox coordinates. Batch Normalization layer and Convolution layer are combined to reduce the use of video memory space and improve network performance. The experimental results show that the mAP50 of the improved YOLO v3 algorithm in the helmet wearing test set is improved by 7.99%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved Research on Target Unreachable Problem of Path Planning Based on Artificial Potential Field for an Unmanned Aerial Vehicle Development of a Modified Bouc-Wen Model for Butterfly Hysteresis Behaviors Embedded Control of Scanning Mirror A Durian Variety Identifier Using Canny Edge and CNN Inverse Control of Nonlinear Distortion in Adaptive System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1