可压缩多相湍流的动态负载平衡

Keke Zhai, Tania Banerjee-Mishra, D. Zwick, J. Hackl, S. Ranka
{"title":"可压缩多相湍流的动态负载平衡","authors":"Keke Zhai, Tania Banerjee-Mishra, D. Zwick, J. Hackl, S. Ranka","doi":"10.1145/3205289.3205304","DOIUrl":null,"url":null,"abstract":"CMT-nek is a new scientific application for performing high fidelity predictive simulations of particle laden explosively dispersed turbulent flows. CMT-nek involves detailed simulations, is compute intensive and is targeted to be deployed on exascale platforms. The moving particles are the main source of load imbalance as the application is executed on parallel processors. In a demonstration problem, all the particles are initially in a closed container until a detonation occurs and the particles move apart. If all processors get an equal share of the fluid domain, then only some of the processors get sections of the domain that are initially laden with particles, leading to disparate load on the processors. In order to eliminate load imbalance in different processors and to speedup the makespan, we present different load balancing algorithms for CMT-nek on large scale multicore platforms consisting of hundred of thousands of cores. The detailed process of the load balancing algorithms are presented. The performance of the different load balancing algorithms are compared and the associated overheads are analyzed. Evaluations on the application with and without load balancing are conducted and these show that with load balancing, simulation time becomes faster by a factor of up to 9.97.","PeriodicalId":441217,"journal":{"name":"Proceedings of the 2018 International Conference on Supercomputing","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Dynamic Load Balancing for Compressible Multiphase Turbulence\",\"authors\":\"Keke Zhai, Tania Banerjee-Mishra, D. Zwick, J. Hackl, S. Ranka\",\"doi\":\"10.1145/3205289.3205304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CMT-nek is a new scientific application for performing high fidelity predictive simulations of particle laden explosively dispersed turbulent flows. CMT-nek involves detailed simulations, is compute intensive and is targeted to be deployed on exascale platforms. The moving particles are the main source of load imbalance as the application is executed on parallel processors. In a demonstration problem, all the particles are initially in a closed container until a detonation occurs and the particles move apart. If all processors get an equal share of the fluid domain, then only some of the processors get sections of the domain that are initially laden with particles, leading to disparate load on the processors. In order to eliminate load imbalance in different processors and to speedup the makespan, we present different load balancing algorithms for CMT-nek on large scale multicore platforms consisting of hundred of thousands of cores. The detailed process of the load balancing algorithms are presented. The performance of the different load balancing algorithms are compared and the associated overheads are analyzed. Evaluations on the application with and without load balancing are conducted and these show that with load balancing, simulation time becomes faster by a factor of up to 9.97.\",\"PeriodicalId\":441217,\"journal\":{\"name\":\"Proceedings of the 2018 International Conference on Supercomputing\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 International Conference on Supercomputing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3205289.3205304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3205289.3205304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

CMT-nek是一种新的科学应用程序,用于执行高保真的颗粒负载爆炸分散湍流预测模拟。CMT-nek涉及详细的模拟,是计算密集型的,目标是部署在百亿亿级平台上。当应用程序在并行处理器上执行时,移动的粒子是负载不平衡的主要来源。在一个演示问题中,所有的粒子最初都在一个封闭的容器中,直到爆炸发生,粒子分开。如果所有处理器获得流体域的相同份额,那么只有一些处理器获得最初装载粒子的区域,从而导致处理器上的负载不同。为了消除不同处理器间的负载不平衡,加快最大运行时间,在数十万核的大型多核平台上提出了不同的CMT-nek负载平衡算法。给出了负载均衡算法的具体实现过程。比较了不同负载均衡算法的性能,并分析了相关的开销。对应用程序进行了负载均衡和不负载均衡的评估,结果表明,在负载均衡的情况下,模拟时间缩短了9.97倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic Load Balancing for Compressible Multiphase Turbulence
CMT-nek is a new scientific application for performing high fidelity predictive simulations of particle laden explosively dispersed turbulent flows. CMT-nek involves detailed simulations, is compute intensive and is targeted to be deployed on exascale platforms. The moving particles are the main source of load imbalance as the application is executed on parallel processors. In a demonstration problem, all the particles are initially in a closed container until a detonation occurs and the particles move apart. If all processors get an equal share of the fluid domain, then only some of the processors get sections of the domain that are initially laden with particles, leading to disparate load on the processors. In order to eliminate load imbalance in different processors and to speedup the makespan, we present different load balancing algorithms for CMT-nek on large scale multicore platforms consisting of hundred of thousands of cores. The detailed process of the load balancing algorithms are presented. The performance of the different load balancing algorithms are compared and the associated overheads are analyzed. Evaluations on the application with and without load balancing are conducted and these show that with load balancing, simulation time becomes faster by a factor of up to 9.97.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ComPEND CELIA PA-SSD: A Page-Type Aware TLC SSD for Improved Write/Read Performance and Storage Efficiency GRU Sculptor: Flexible Approximation with Selective Dynamic Loop Perforation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1