{"title":"干涉仪角度测量系统的明确精度","authors":"W. Kendall","doi":"10.1109/TSET.1965.5009646","DOIUrl":null,"url":null,"abstract":"In this paper we consider the problem of using signals received at three or four antennas to estimate the direction from which radio-frequency (RF) radiation is arriving. Though the results are couched in the terminology of angle measurements, they are applicable to any ambiguous measurements for which the number of ambiguities is inversely proportional to the accuracy. For an interferometric system the effect of receiver noise is examined. Then the optimum way to process the received waveforms, and the best spacing for the antennas, is determined. Next, signal-to-noise ratio (SNR) requirements are determined which must be met to insure that, with a given probability, the final unambiguous measurement is not in error by more than some specified amount. Finally, a comparison is made between a system which uses unambiguous measurements and a system which uses ambiguous measurements and then resolves the ambiguities.","PeriodicalId":153922,"journal":{"name":"IEEE Transactions on Space Electronics and Telemetry","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1965-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Unambiguous Accuracy of an Interferometer Angle-Measuring System\",\"authors\":\"W. Kendall\",\"doi\":\"10.1109/TSET.1965.5009646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider the problem of using signals received at three or four antennas to estimate the direction from which radio-frequency (RF) radiation is arriving. Though the results are couched in the terminology of angle measurements, they are applicable to any ambiguous measurements for which the number of ambiguities is inversely proportional to the accuracy. For an interferometric system the effect of receiver noise is examined. Then the optimum way to process the received waveforms, and the best spacing for the antennas, is determined. Next, signal-to-noise ratio (SNR) requirements are determined which must be met to insure that, with a given probability, the final unambiguous measurement is not in error by more than some specified amount. Finally, a comparison is made between a system which uses unambiguous measurements and a system which uses ambiguous measurements and then resolves the ambiguities.\",\"PeriodicalId\":153922,\"journal\":{\"name\":\"IEEE Transactions on Space Electronics and Telemetry\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1965-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Space Electronics and Telemetry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSET.1965.5009646\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Space Electronics and Telemetry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSET.1965.5009646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unambiguous Accuracy of an Interferometer Angle-Measuring System
In this paper we consider the problem of using signals received at three or four antennas to estimate the direction from which radio-frequency (RF) radiation is arriving. Though the results are couched in the terminology of angle measurements, they are applicable to any ambiguous measurements for which the number of ambiguities is inversely proportional to the accuracy. For an interferometric system the effect of receiver noise is examined. Then the optimum way to process the received waveforms, and the best spacing for the antennas, is determined. Next, signal-to-noise ratio (SNR) requirements are determined which must be met to insure that, with a given probability, the final unambiguous measurement is not in error by more than some specified amount. Finally, a comparison is made between a system which uses unambiguous measurements and a system which uses ambiguous measurements and then resolves the ambiguities.