智能建筑能耗与舒适度优化管理的MILP模型

Jerson A. Pinzon, P. Vergara, L. C. P. Silva, M. J. Rider
{"title":"智能建筑能耗与舒适度优化管理的MILP模型","authors":"Jerson A. Pinzon, P. Vergara, L. C. P. Silva, M. J. Rider","doi":"10.1109/ISGT.2017.8085956","DOIUrl":null,"url":null,"abstract":"This paper presents a new mixed integer linear programing (MILP) model for the management of energy consumption and comfort in smart buildings. Initially, a detailed mixed integer non-linear programming (MINLP) model is formulated. The approach considers the management of heating, ventilation and air conditioning (HVAC) units, lighting appliances, photovoltaic generation (PV) and energy storage system (ESS). Then, a set of linear and equivalent representations are used to approximate the problem by an MILP model. The aims of the proposed model is to minimize the electricity bill by managing the loads, as well as the schedule of the ESS, meanwhile comfortable indoor conditions are ensured by a set of mathematical constraints. A commercial MILP solver was used to guarantee optimality. The strategy was tested in an university building with multiple zones. Comparisons between the proposed MILP model and simulations in EnergyPlus were used to validate the results.","PeriodicalId":296398,"journal":{"name":"2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"An MILP model for optimal management of energy consumption and comfort in smart buildings\",\"authors\":\"Jerson A. Pinzon, P. Vergara, L. C. P. Silva, M. J. Rider\",\"doi\":\"10.1109/ISGT.2017.8085956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new mixed integer linear programing (MILP) model for the management of energy consumption and comfort in smart buildings. Initially, a detailed mixed integer non-linear programming (MINLP) model is formulated. The approach considers the management of heating, ventilation and air conditioning (HVAC) units, lighting appliances, photovoltaic generation (PV) and energy storage system (ESS). Then, a set of linear and equivalent representations are used to approximate the problem by an MILP model. The aims of the proposed model is to minimize the electricity bill by managing the loads, as well as the schedule of the ESS, meanwhile comfortable indoor conditions are ensured by a set of mathematical constraints. A commercial MILP solver was used to guarantee optimality. The strategy was tested in an university building with multiple zones. Comparisons between the proposed MILP model and simulations in EnergyPlus were used to validate the results.\",\"PeriodicalId\":296398,\"journal\":{\"name\":\"2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGT.2017.8085956\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGT.2017.8085956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

提出了一种新的混合整数线性规划(MILP)模型,用于智能建筑的能耗和舒适度管理。首先,建立了详细的混合整数非线性规划(MINLP)模型。该方法考虑了供暖、通风和空调(HVAC)设备、照明设备、光伏发电(PV)和储能系统(ESS)的管理。然后,使用一组线性和等价的表示,通过一个MILP模型来逼近问题。提出的模型的目的是通过管理负荷和ESS的时间表来最小化电费,同时通过一组数学约束来确保舒适的室内条件。为了保证最优性,使用了商用MILP求解器。该策略在一个有多个区域的大学建筑中进行了测试。将所提出的MILP模型与EnergyPlus中的仿真结果进行了比较,以验证结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An MILP model for optimal management of energy consumption and comfort in smart buildings
This paper presents a new mixed integer linear programing (MILP) model for the management of energy consumption and comfort in smart buildings. Initially, a detailed mixed integer non-linear programming (MINLP) model is formulated. The approach considers the management of heating, ventilation and air conditioning (HVAC) units, lighting appliances, photovoltaic generation (PV) and energy storage system (ESS). Then, a set of linear and equivalent representations are used to approximate the problem by an MILP model. The aims of the proposed model is to minimize the electricity bill by managing the loads, as well as the schedule of the ESS, meanwhile comfortable indoor conditions are ensured by a set of mathematical constraints. A commercial MILP solver was used to guarantee optimality. The strategy was tested in an university building with multiple zones. Comparisons between the proposed MILP model and simulations in EnergyPlus were used to validate the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A cyber-physical resilience metric for smart grids Optimal allocation of photovoltaic systems and energy storage systems considering constraints of both transmission and distribution systems Stochastic dynamic power flow analysis based on stochastic response surfarce method and ARMA-GARCH model Towards the improvement of multi-objective evolutionary algorithms for service restoration Multi-level control framework for enhanced flexibility of active distribution network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1