基于多目标进化算法的可解释模糊模型微阵列基因表达数据分析

Zhenyu Wang, V. Palade
{"title":"基于多目标进化算法的可解释模糊模型微阵列基因表达数据分析","authors":"Zhenyu Wang, V. Palade","doi":"10.1109/BIBM.2010.5706582","DOIUrl":null,"url":null,"abstract":"We believe the great interpretability of fuzzy models allow fuzzy-based methods to play a very important role in Microarray gene expression data analysis, but the advantages offered by fuzzy-based techniques in this application have not yet been fully explored in the literature. In this paper, we construct Multi-Objective Evolutionary Algorithms based Interpretable Fuzzy (MOEAIF) models for microarray gene expression data analysis. Our novel fuzzy models can significantly decrease the model complexity, and automatically balance the accuracy and interpretability of the models. The experimental studies have shown that relatively simple and small fuzzy rule bases, with satisfactory classification performance, have been successful found for challenging microarray gene expression datasets.","PeriodicalId":275098,"journal":{"name":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multi-objective evolutionary algorithms based Interpretable Fuzzy models for microarray gene expression data analysis\",\"authors\":\"Zhenyu Wang, V. Palade\",\"doi\":\"10.1109/BIBM.2010.5706582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We believe the great interpretability of fuzzy models allow fuzzy-based methods to play a very important role in Microarray gene expression data analysis, but the advantages offered by fuzzy-based techniques in this application have not yet been fully explored in the literature. In this paper, we construct Multi-Objective Evolutionary Algorithms based Interpretable Fuzzy (MOEAIF) models for microarray gene expression data analysis. Our novel fuzzy models can significantly decrease the model complexity, and automatically balance the accuracy and interpretability of the models. The experimental studies have shown that relatively simple and small fuzzy rule bases, with satisfactory classification performance, have been successful found for challenging microarray gene expression datasets.\",\"PeriodicalId\":275098,\"journal\":{\"name\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2010.5706582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2010.5706582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们相信模糊模型的巨大可解释性使得基于模糊的方法在微阵列基因表达数据分析中发挥了非常重要的作用,但是基于模糊的技术在这一应用中所提供的优势尚未在文献中得到充分的探讨。在本文中,我们构建了基于多目标进化算法的可解释模糊(MOEAIF)模型用于微阵列基因表达数据分析。本文提出的模糊模型能显著降低模型的复杂度,并能自动平衡模型的准确性和可解释性。实验研究表明,已经成功地找到了相对简单和小的模糊规则库,并具有满意的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-objective evolutionary algorithms based Interpretable Fuzzy models for microarray gene expression data analysis
We believe the great interpretability of fuzzy models allow fuzzy-based methods to play a very important role in Microarray gene expression data analysis, but the advantages offered by fuzzy-based techniques in this application have not yet been fully explored in the literature. In this paper, we construct Multi-Objective Evolutionary Algorithms based Interpretable Fuzzy (MOEAIF) models for microarray gene expression data analysis. Our novel fuzzy models can significantly decrease the model complexity, and automatically balance the accuracy and interpretability of the models. The experimental studies have shown that relatively simple and small fuzzy rule bases, with satisfactory classification performance, have been successful found for challenging microarray gene expression datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A gene ranking method using text-mining for the identification of disease related genes alns — A searchable and filterable sequence alignment format A fast and noise-adaptive rough-fuzzy hybrid algorithm for medical image segmentation An accurate, automatic method for markerless alignment of electron tomographic images Unsupervised integration of multiple protein disorder predictors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1