{"title":"基于贝叶斯网络的加密勒索病毒感染向量推理","authors":"Aaron Zimba, Zhaoshun Wang, Hongsong Chen","doi":"10.1109/ISI.2017.8004894","DOIUrl":null,"url":null,"abstract":"Ransomware techniques have evolved over time with the most resilient attacks making data recovery practically impossible. This has driven countermeasures to shift towards recovery against prevention but in this paper, we model ransomware attacks from an infection vector point of view. We follow the basic infection chain of crypto ransomware and use Bayesian network statistics to infer some of the most common ransomware infection vectors. We also employ the use of attack and sensor nodes to capture uncertainty in the Bayesian network.","PeriodicalId":423696,"journal":{"name":"2017 IEEE International Conference on Intelligence and Security Informatics (ISI)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Reasoning crypto ransomware infection vectors with Bayesian networks\",\"authors\":\"Aaron Zimba, Zhaoshun Wang, Hongsong Chen\",\"doi\":\"10.1109/ISI.2017.8004894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ransomware techniques have evolved over time with the most resilient attacks making data recovery practically impossible. This has driven countermeasures to shift towards recovery against prevention but in this paper, we model ransomware attacks from an infection vector point of view. We follow the basic infection chain of crypto ransomware and use Bayesian network statistics to infer some of the most common ransomware infection vectors. We also employ the use of attack and sensor nodes to capture uncertainty in the Bayesian network.\",\"PeriodicalId\":423696,\"journal\":{\"name\":\"2017 IEEE International Conference on Intelligence and Security Informatics (ISI)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Intelligence and Security Informatics (ISI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISI.2017.8004894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Intelligence and Security Informatics (ISI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2017.8004894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reasoning crypto ransomware infection vectors with Bayesian networks
Ransomware techniques have evolved over time with the most resilient attacks making data recovery practically impossible. This has driven countermeasures to shift towards recovery against prevention but in this paper, we model ransomware attacks from an infection vector point of view. We follow the basic infection chain of crypto ransomware and use Bayesian network statistics to infer some of the most common ransomware infection vectors. We also employ the use of attack and sensor nodes to capture uncertainty in the Bayesian network.