股票价格预测:一个时间序列分析

Fatima Juairiah, Mostafa Mahatabe, Hasan Bin Jamal, Aysha Shiddika, Tanvir Rouf Shawon, Nibir Chandra Mandal
{"title":"股票价格预测:一个时间序列分析","authors":"Fatima Juairiah, Mostafa Mahatabe, Hasan Bin Jamal, Aysha Shiddika, Tanvir Rouf Shawon, Nibir Chandra Mandal","doi":"10.1109/ICCIT57492.2022.10056009","DOIUrl":null,"url":null,"abstract":"Predicting future stock volatility has always been a demanding chore for research studies. Individuals around the world have long regarded the stock market as a substantial profit. A stock data set contains numerous precise terms that are difficult for an individual to comprehend when considering stock market expenditures. An essential manifestation of a stock’s performance on the stock market is its closing price, but it is challenging to estimate the stock market’s price movements. This study aims to provide a future market scenario supported by statistical data. We used the Microsoft Corporation Stock dataset from 1986 to 2022. To foresee stock market volatility, we used time series analysis with the Long Short-Term Memory (LSTM), Bidirectional Long-short Term Memory (Bi-LSTM), Autoregressive Integrated Moving Average (ARIMA), Hidden Markov Model (HMM), and Multi-Head Attention. We have achieved 0.153, 0.202, 6.674, 14.760, and 21.493 for Transformer, HMM, ARIMA, BiLSTM, and LSTM respectively.","PeriodicalId":255498,"journal":{"name":"2022 25th International Conference on Computer and Information Technology (ICCIT)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stock Price Prediction: A Time Series Analysis\",\"authors\":\"Fatima Juairiah, Mostafa Mahatabe, Hasan Bin Jamal, Aysha Shiddika, Tanvir Rouf Shawon, Nibir Chandra Mandal\",\"doi\":\"10.1109/ICCIT57492.2022.10056009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting future stock volatility has always been a demanding chore for research studies. Individuals around the world have long regarded the stock market as a substantial profit. A stock data set contains numerous precise terms that are difficult for an individual to comprehend when considering stock market expenditures. An essential manifestation of a stock’s performance on the stock market is its closing price, but it is challenging to estimate the stock market’s price movements. This study aims to provide a future market scenario supported by statistical data. We used the Microsoft Corporation Stock dataset from 1986 to 2022. To foresee stock market volatility, we used time series analysis with the Long Short-Term Memory (LSTM), Bidirectional Long-short Term Memory (Bi-LSTM), Autoregressive Integrated Moving Average (ARIMA), Hidden Markov Model (HMM), and Multi-Head Attention. We have achieved 0.153, 0.202, 6.674, 14.760, and 21.493 for Transformer, HMM, ARIMA, BiLSTM, and LSTM respectively.\",\"PeriodicalId\":255498,\"journal\":{\"name\":\"2022 25th International Conference on Computer and Information Technology (ICCIT)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 25th International Conference on Computer and Information Technology (ICCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIT57492.2022.10056009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 25th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIT57492.2022.10056009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

预测未来股票波动对研究来说一直是一项艰巨的任务。长期以来,世界各地的个人都认为股票市场是一笔丰厚的利润。股票数据集包含许多精确的术语,当考虑股票市场支出时,个人很难理解。股票在股票市场上表现的一个基本表现是它的收盘价,但估计股票市场的价格变动是具有挑战性的。本研究的目的是提供一个未来的市场情景支持的统计数据。我们使用了1986年至2022年的微软公司股票数据集。为了预测股票市场的波动,我们使用了长短期记忆(LSTM)、双向长短期记忆(Bi-LSTM)、自回归综合移动平均(ARIMA)、隐马尔可夫模型(HMM)和多头注意的时间序列分析。我们对Transformer、HMM、ARIMA、BiLSTM和LSTM分别实现了0.153、0.202、6.674、14.760和21.493。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stock Price Prediction: A Time Series Analysis
Predicting future stock volatility has always been a demanding chore for research studies. Individuals around the world have long regarded the stock market as a substantial profit. A stock data set contains numerous precise terms that are difficult for an individual to comprehend when considering stock market expenditures. An essential manifestation of a stock’s performance on the stock market is its closing price, but it is challenging to estimate the stock market’s price movements. This study aims to provide a future market scenario supported by statistical data. We used the Microsoft Corporation Stock dataset from 1986 to 2022. To foresee stock market volatility, we used time series analysis with the Long Short-Term Memory (LSTM), Bidirectional Long-short Term Memory (Bi-LSTM), Autoregressive Integrated Moving Average (ARIMA), Hidden Markov Model (HMM), and Multi-Head Attention. We have achieved 0.153, 0.202, 6.674, 14.760, and 21.493 for Transformer, HMM, ARIMA, BiLSTM, and LSTM respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SlotFinder: A Spatio-temporal based Car Parking System Land Cover and Land Use Detection using Semi-Supervised Learning Comparative Analysis of Process Scheduling Algorithm using AI models Throughput Optimization of IEEE 802.15.4e TSCH-Based Scheduling: A Deep Neural Network (DNN) Scheme Towards Developing a Voice-Over-Guided System for Visually Impaired People to Learn Writing the Alphabets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1