静态一致性的可判定性和复杂性

Brijesh Dongol, R. Hierons
{"title":"静态一致性的可判定性和复杂性","authors":"Brijesh Dongol, R. Hierons","doi":"10.1145/2933575.2933576","DOIUrl":null,"url":null,"abstract":"Quiescent consistency is a notion of correctness for a concurrent object that gives meaning to the object’s behaviours in quiescent states, i.e., states in which none of the object’s operations are being executed. The condition enables greater flexibility in object design by allowing more behaviours to be admitted, which in turn allows the algorithms implementing quiescent consistent objects to be more efficient (when executed in a multithreaded environment).Quiescent consistency of an implementation object is defined in terms of a corresponding abstract specification. This gives rise to two important verification questions: membership (checking whether a behaviour of the implementation is allowed by the specification) and correctness (checking whether all behaviours of the implementation are allowed by the specification). In this paper, we consider the membership and correctness conditions for quiescent consistency, as well as a restricted form that assumes an upper limit on the number of events between two quiescent states. We show that the membership problem for unrestricted quiescent consistency is NP-complete and that the correctness problem is decidable, coNEXPTIME-hard, and in EXPSPACE. For the restricted form, we show that membership is in PTIME, while correctness is PSPACE-complete.","PeriodicalId":206395,"journal":{"name":"2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Decidability and Complexity for Quiescent Consistency\",\"authors\":\"Brijesh Dongol, R. Hierons\",\"doi\":\"10.1145/2933575.2933576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quiescent consistency is a notion of correctness for a concurrent object that gives meaning to the object’s behaviours in quiescent states, i.e., states in which none of the object’s operations are being executed. The condition enables greater flexibility in object design by allowing more behaviours to be admitted, which in turn allows the algorithms implementing quiescent consistent objects to be more efficient (when executed in a multithreaded environment).Quiescent consistency of an implementation object is defined in terms of a corresponding abstract specification. This gives rise to two important verification questions: membership (checking whether a behaviour of the implementation is allowed by the specification) and correctness (checking whether all behaviours of the implementation are allowed by the specification). In this paper, we consider the membership and correctness conditions for quiescent consistency, as well as a restricted form that assumes an upper limit on the number of events between two quiescent states. We show that the membership problem for unrestricted quiescent consistency is NP-complete and that the correctness problem is decidable, coNEXPTIME-hard, and in EXPSPACE. For the restricted form, we show that membership is in PTIME, while correctness is PSPACE-complete.\",\"PeriodicalId\":206395,\"journal\":{\"name\":\"2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2933575.2933576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2933575.2933576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

静态一致性是一个关于并发对象正确性的概念,它赋予对象在静态状态(即对象的任何操作都没有执行的状态)下的行为以意义。该条件允许允许更多的行为,从而使对象设计具有更大的灵活性,这反过来又允许实现静态一致对象的算法更有效(在多线程环境中执行时)。实现对象的静态一致性是根据相应的抽象规范定义的。这就产生了两个重要的验证问题:成员性(检查实现的行为是否被规范所允许)和正确性(检查实现的所有行为是否被规范所允许)。在本文中,我们考虑了静态一致性的隶属性和正确性条件,以及假设两个静态状态之间的事件数有上限的一种限制形式。我们证明了无限制静态一致性的隶属性问题是np完全的,正确性问题是可决定的,coNEXPTIME-hard的,并且在EXPSPACE中。对于受限形式,我们证明了隶属关系是在PTIME中,而正确性是pspace完备的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Decidability and Complexity for Quiescent Consistency
Quiescent consistency is a notion of correctness for a concurrent object that gives meaning to the object’s behaviours in quiescent states, i.e., states in which none of the object’s operations are being executed. The condition enables greater flexibility in object design by allowing more behaviours to be admitted, which in turn allows the algorithms implementing quiescent consistent objects to be more efficient (when executed in a multithreaded environment).Quiescent consistency of an implementation object is defined in terms of a corresponding abstract specification. This gives rise to two important verification questions: membership (checking whether a behaviour of the implementation is allowed by the specification) and correctness (checking whether all behaviours of the implementation are allowed by the specification). In this paper, we consider the membership and correctness conditions for quiescent consistency, as well as a restricted form that assumes an upper limit on the number of events between two quiescent states. We show that the membership problem for unrestricted quiescent consistency is NP-complete and that the correctness problem is decidable, coNEXPTIME-hard, and in EXPSPACE. For the restricted form, we show that membership is in PTIME, while correctness is PSPACE-complete.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantitative Algebraic Reasoning Differential Refinement Logic* Minimization of Symbolic Tree Automata Graphs of relational structures: restricted types The Complexity of Coverability in ν-Petri Nets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1