基于材料识别的崎岖地形移动机器人最大摩擦和最优滑移比实时估计

Jayoung Kim, Jihong Lee
{"title":"基于材料识别的崎岖地形移动机器人最大摩擦和最优滑移比实时估计","authors":"Jayoung Kim, Jihong Lee","doi":"10.1109/ICCAS.2013.6704210","DOIUrl":null,"url":null,"abstract":"This paper focuses on real-time estimation of optimal control parameters (maximum friction coefficient and optimal slip ratio) in order to secure maneuverability of a mobile robot on rough terrain. This paper is largely divided into two parts; 1) material identification, 2) estimation of optimal control parameters. Firstly, since maximum friction coefficient and optimal slip ratio indicate different characteristics depending on material types, prior to estimation of optimal control parameters, it is needed to identify which material a robot is moving on. Thus, this paper proposes a method for material identification based on soil resistance impeding motion of a robot. Material identification includes Gaussian classifier to stochastically identify one of the material types. Secondly, an estimator is developed so as to predict maximum friction coefficient and optimal slip ratio which are crucial parameters for a mobile robot while effectively traversing rough terrain. Friction-slip curves based on experimental data from a test for analysis of a wheel-terrain interaction are employed to make a prediction model for estimation of optimal control parameters. Results of material identification and estimation of optimal control parameters are verified through one-wheel driving experiments on three kinds of material types: sand, gravel and grass using the wheel-terrain interaction testbed.","PeriodicalId":415263,"journal":{"name":"2013 13th International Conference on Control, Automation and Systems (ICCAS 2013)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Real-time estimation of maximum friction and optimal slip ratio based on material identification for a mobile robot on rough terrain\",\"authors\":\"Jayoung Kim, Jihong Lee\",\"doi\":\"10.1109/ICCAS.2013.6704210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on real-time estimation of optimal control parameters (maximum friction coefficient and optimal slip ratio) in order to secure maneuverability of a mobile robot on rough terrain. This paper is largely divided into two parts; 1) material identification, 2) estimation of optimal control parameters. Firstly, since maximum friction coefficient and optimal slip ratio indicate different characteristics depending on material types, prior to estimation of optimal control parameters, it is needed to identify which material a robot is moving on. Thus, this paper proposes a method for material identification based on soil resistance impeding motion of a robot. Material identification includes Gaussian classifier to stochastically identify one of the material types. Secondly, an estimator is developed so as to predict maximum friction coefficient and optimal slip ratio which are crucial parameters for a mobile robot while effectively traversing rough terrain. Friction-slip curves based on experimental data from a test for analysis of a wheel-terrain interaction are employed to make a prediction model for estimation of optimal control parameters. Results of material identification and estimation of optimal control parameters are verified through one-wheel driving experiments on three kinds of material types: sand, gravel and grass using the wheel-terrain interaction testbed.\",\"PeriodicalId\":415263,\"journal\":{\"name\":\"2013 13th International Conference on Control, Automation and Systems (ICCAS 2013)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 13th International Conference on Control, Automation and Systems (ICCAS 2013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAS.2013.6704210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 13th International Conference on Control, Automation and Systems (ICCAS 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAS.2013.6704210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

为了保证移动机器人在崎岖地形上的机动性,本文重点研究了最优控制参数(最大摩擦系数和最优滑移比)的实时估计。本文主要分为两个部分;1)材料辨识;2)最优控制参数的估计。首先,由于最大摩擦系数和最优滑移率随材料类型的不同而表现出不同的特性,因此在估计最优控制参数之前,需要识别机器人在哪种材料上移动。因此,本文提出了一种基于土壤阻力阻碍机器人运动的材料识别方法。材料识别采用高斯分类器随机识别一种材料类型。其次,开发了一个估计器,用于预测移动机器人有效穿越崎岖地形的最大摩擦系数和最优滑移比这两个关键参数;基于车轮-地形相互作用分析试验数据,利用摩擦滑移曲线建立了预测模型,用于估计最优控制参数。利用车轮-地形相互作用试验台,对砂、砾石和草三种材料类型进行单轮驾驶试验,验证了材料识别和最优控制参数估计的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-time estimation of maximum friction and optimal slip ratio based on material identification for a mobile robot on rough terrain
This paper focuses on real-time estimation of optimal control parameters (maximum friction coefficient and optimal slip ratio) in order to secure maneuverability of a mobile robot on rough terrain. This paper is largely divided into two parts; 1) material identification, 2) estimation of optimal control parameters. Firstly, since maximum friction coefficient and optimal slip ratio indicate different characteristics depending on material types, prior to estimation of optimal control parameters, it is needed to identify which material a robot is moving on. Thus, this paper proposes a method for material identification based on soil resistance impeding motion of a robot. Material identification includes Gaussian classifier to stochastically identify one of the material types. Secondly, an estimator is developed so as to predict maximum friction coefficient and optimal slip ratio which are crucial parameters for a mobile robot while effectively traversing rough terrain. Friction-slip curves based on experimental data from a test for analysis of a wheel-terrain interaction are employed to make a prediction model for estimation of optimal control parameters. Results of material identification and estimation of optimal control parameters are verified through one-wheel driving experiments on three kinds of material types: sand, gravel and grass using the wheel-terrain interaction testbed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mechanism of one-legged jumping robot with artificial musculoskeletal system Development of a novel FES control system based on treadmill motor current variation for gait rehabilitation of hemiplegic patients after stroke Characteristic analysis of visual evoked potentials and posterior dominant rhythm by use of EEG model Optical flow estimation method to determine compensation by multi resolution of hierarchical structure Design and analysis of a 6-DOF force/torque sensor for human gait analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1