基于学习空间分布模型的汽车雷达贝叶斯扩展目标跟踪

J. Honer, Hauke Kaulbersch
{"title":"基于学习空间分布模型的汽车雷达贝叶斯扩展目标跟踪","authors":"J. Honer, Hauke Kaulbersch","doi":"10.1109/MFI49285.2020.9235255","DOIUrl":null,"url":null,"abstract":"We apply the concept of random set cluster processes in combination with a learned measurement model to extended target tracking. The spatial distribution of measurements generated by a target vehicle is learned via a variational Gaussian mixture (VGM) model. The VGM is then interpreted as the measurement likelihood of a Multi-Bernoulli (MB) distribution. We derive a closed-form Bayesian recursion for tracking an extended target by the use of random set cluster process. This formulation is particularly successful for sparse and noisy measurements, and is applied to automotive Radio Detection and Ranging (RADAR) detections. Last, we provide a large-scale evaluation of our approach based on the data published in the Nuscenes data set.","PeriodicalId":446154,"journal":{"name":"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Bayesian Extended Target Tracking with Automotive Radar using Learned Spatial Distribution Models\",\"authors\":\"J. Honer, Hauke Kaulbersch\",\"doi\":\"10.1109/MFI49285.2020.9235255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We apply the concept of random set cluster processes in combination with a learned measurement model to extended target tracking. The spatial distribution of measurements generated by a target vehicle is learned via a variational Gaussian mixture (VGM) model. The VGM is then interpreted as the measurement likelihood of a Multi-Bernoulli (MB) distribution. We derive a closed-form Bayesian recursion for tracking an extended target by the use of random set cluster process. This formulation is particularly successful for sparse and noisy measurements, and is applied to automotive Radio Detection and Ranging (RADAR) detections. Last, we provide a large-scale evaluation of our approach based on the data published in the Nuscenes data set.\",\"PeriodicalId\":446154,\"journal\":{\"name\":\"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MFI49285.2020.9235255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI49285.2020.9235255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们将随机集聚类过程的概念与学习测量模型相结合,应用于扩展目标跟踪。通过变分高斯混合(VGM)模型学习目标车辆产生的测量值的空间分布。然后将VGM解释为多重伯努利(MB)分布的测量似然。利用随机集聚类过程,导出了一种用于跟踪扩展目标的封闭贝叶斯递归。该公式对于稀疏和噪声测量特别成功,并应用于汽车无线电探测和测距(RADAR)检测。最后,我们基于Nuscenes数据集中发布的数据对我们的方法进行了大规模的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayesian Extended Target Tracking with Automotive Radar using Learned Spatial Distribution Models
We apply the concept of random set cluster processes in combination with a learned measurement model to extended target tracking. The spatial distribution of measurements generated by a target vehicle is learned via a variational Gaussian mixture (VGM) model. The VGM is then interpreted as the measurement likelihood of a Multi-Bernoulli (MB) distribution. We derive a closed-form Bayesian recursion for tracking an extended target by the use of random set cluster process. This formulation is particularly successful for sparse and noisy measurements, and is applied to automotive Radio Detection and Ranging (RADAR) detections. Last, we provide a large-scale evaluation of our approach based on the data published in the Nuscenes data set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
OAFuser: Online Adaptive Extended Object Tracking and Fusion using automotive Radar Detections Observability driven Multi-modal Line-scan Camera Calibration Localization and velocity estimation based on multiple bistatic measurements A Continuous Probabilistic Origin Association Filter for Extended Object Tracking Towards Automatic Classification of Fragmented Rock Piles via Proprioceptive Sensing and Wavelet Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1