H. Aquino, D. Connelly, A. Orlov, J. Chisum, G. Bernstein, W. Porod
{"title":"利用共面波导作为提高带宽的自旋波源","authors":"H. Aquino, D. Connelly, A. Orlov, J. Chisum, G. Bernstein, W. Porod","doi":"10.1109/DRC50226.2020.9135163","DOIUrl":null,"url":null,"abstract":"Spin waves show potential as an alternative to electric current for computing and signal processing, which require low-power and small size. One approach to using spin waves is to convert millimeter or microwave electrical signals to spin waves having micrometer wavelengths. All signal processing is then done by the diffraction and interference of spin waves traveling through a magnetic thin film. These waves are then converted back into electrical signals [1] , [2] .","PeriodicalId":397182,"journal":{"name":"2020 Device Research Conference (DRC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Coplanar Waveguides as Spin-Wave Sources with Improved Bandwidth\",\"authors\":\"H. Aquino, D. Connelly, A. Orlov, J. Chisum, G. Bernstein, W. Porod\",\"doi\":\"10.1109/DRC50226.2020.9135163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spin waves show potential as an alternative to electric current for computing and signal processing, which require low-power and small size. One approach to using spin waves is to convert millimeter or microwave electrical signals to spin waves having micrometer wavelengths. All signal processing is then done by the diffraction and interference of spin waves traveling through a magnetic thin film. These waves are then converted back into electrical signals [1] , [2] .\",\"PeriodicalId\":397182,\"journal\":{\"name\":\"2020 Device Research Conference (DRC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Device Research Conference (DRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC50226.2020.9135163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Device Research Conference (DRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC50226.2020.9135163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using Coplanar Waveguides as Spin-Wave Sources with Improved Bandwidth
Spin waves show potential as an alternative to electric current for computing and signal processing, which require low-power and small size. One approach to using spin waves is to convert millimeter or microwave electrical signals to spin waves having micrometer wavelengths. All signal processing is then done by the diffraction and interference of spin waves traveling through a magnetic thin film. These waves are then converted back into electrical signals [1] , [2] .