基于距离的反射信号路径模型的室内用户定位

Jongdae Jung, H. Myung
{"title":"基于距离的反射信号路径模型的室内用户定位","authors":"Jongdae Jung, H. Myung","doi":"10.1109/DEST.2011.5936634","DOIUrl":null,"url":null,"abstract":"User localization is one of the key technologies for mobile robots to successfully interact with humans. Among various localization methods using radio frequency (RF) signals, time of arrival (TOA) based localization is popular since the target coordinates can be directly calculated from the accurate range measurements. In complex indoor environment, however, RF ranging-based localization is quite challenging since the range measurements suffer not only from signal noise but also from signal blockages and reflections. A set of range measurements taken in complex indoor environment verifies that almost all measurements are non-line-of-sight (NLOS) ranges which have striking difference to the line-of-sight (LOS) distances. These NLOS range measurements make severe degradation in the accuracy of trilateration based localizations if used without any compensation. In this paper we propose a particle filter-based localization algorithm which utilizes indoor geometry from a given map to estimate the NLOS signal path and compensates for the range measurements. The algorithm is verified with experiments performed in real indoor environments.","PeriodicalId":297420,"journal":{"name":"5th IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2011)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Range-based indoor user localization using reflected signal path model\",\"authors\":\"Jongdae Jung, H. Myung\",\"doi\":\"10.1109/DEST.2011.5936634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"User localization is one of the key technologies for mobile robots to successfully interact with humans. Among various localization methods using radio frequency (RF) signals, time of arrival (TOA) based localization is popular since the target coordinates can be directly calculated from the accurate range measurements. In complex indoor environment, however, RF ranging-based localization is quite challenging since the range measurements suffer not only from signal noise but also from signal blockages and reflections. A set of range measurements taken in complex indoor environment verifies that almost all measurements are non-line-of-sight (NLOS) ranges which have striking difference to the line-of-sight (LOS) distances. These NLOS range measurements make severe degradation in the accuracy of trilateration based localizations if used without any compensation. In this paper we propose a particle filter-based localization algorithm which utilizes indoor geometry from a given map to estimate the NLOS signal path and compensates for the range measurements. The algorithm is verified with experiments performed in real indoor environments.\",\"PeriodicalId\":297420,\"journal\":{\"name\":\"5th IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2011)\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"5th IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2011)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEST.2011.5936634\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"5th IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEST.2011.5936634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

用户定位是移动机器人成功与人交互的关键技术之一。在各种利用射频信号的定位方法中,基于到达时间(TOA)的定位方法由于可以直接从精确的距离测量中计算目标坐标而广受欢迎。然而,在复杂的室内环境中,基于射频距离的定位具有很大的挑战性,因为距离测量不仅受到信号噪声的影响,而且还受到信号阻塞和反射的影响。一组在复杂室内环境下的距离测量验证了几乎所有的测量值都是非视距(NLOS)范围,这与视距(LOS)距离有显著差异。如果没有任何补偿,这些NLOS范围测量会严重降低基于三边定位的精度。本文提出了一种基于粒子滤波的定位算法,该算法利用给定地图的室内几何形状来估计NLOS信号路径并对距离测量进行补偿。在真实的室内环境中进行了实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Range-based indoor user localization using reflected signal path model
User localization is one of the key technologies for mobile robots to successfully interact with humans. Among various localization methods using radio frequency (RF) signals, time of arrival (TOA) based localization is popular since the target coordinates can be directly calculated from the accurate range measurements. In complex indoor environment, however, RF ranging-based localization is quite challenging since the range measurements suffer not only from signal noise but also from signal blockages and reflections. A set of range measurements taken in complex indoor environment verifies that almost all measurements are non-line-of-sight (NLOS) ranges which have striking difference to the line-of-sight (LOS) distances. These NLOS range measurements make severe degradation in the accuracy of trilateration based localizations if used without any compensation. In this paper we propose a particle filter-based localization algorithm which utilizes indoor geometry from a given map to estimate the NLOS signal path and compensates for the range measurements. The algorithm is verified with experiments performed in real indoor environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Innovation adoption forum for industry and public sector Global path planning using improved ant colony optimization algorithm through bilateral cooperative exploration Double burst error correction method: Case of interference incidents during data transmission in wired channels Overview of cognitive visualisation Interval type-2 fuzzy logic controllers for flocking behavior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1