一种利用因子图跟踪近距离运动目标的有效数据关联方案

V. P. Panakkal, R. Velmurugan
{"title":"一种利用因子图跟踪近距离运动目标的有效数据关联方案","authors":"V. P. Panakkal, R. Velmurugan","doi":"10.1109/NCC.2011.5734703","DOIUrl":null,"url":null,"abstract":"Effectiveness of tracking closely moving targets depends on the capability to resolve the ambiguity in associating measurements-to-tracks. Joint probabilistic data association (JPDA) has been shown to be very effective in tracking closely moving objects, but the approach is susceptible to track coalescence. The factor graph (FG) based association scheme developed in this paper circumvents the track coalescence by avoiding multiple hypothesis equivalence with recursive updation of likelihood values. The improvement in association using factor graph based data association scheme over JPDA has been demonstrated using a simulated scenario of closely moving targets. The steady state likelihood values obtained at the end of recursive process are shown to match the likelihoods obtained from measurements.","PeriodicalId":158295,"journal":{"name":"2011 National Conference on Communications (NCC)","volume":"40 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Effective data association scheme for tracking closely moving targets using factor graphs\",\"authors\":\"V. P. Panakkal, R. Velmurugan\",\"doi\":\"10.1109/NCC.2011.5734703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effectiveness of tracking closely moving targets depends on the capability to resolve the ambiguity in associating measurements-to-tracks. Joint probabilistic data association (JPDA) has been shown to be very effective in tracking closely moving objects, but the approach is susceptible to track coalescence. The factor graph (FG) based association scheme developed in this paper circumvents the track coalescence by avoiding multiple hypothesis equivalence with recursive updation of likelihood values. The improvement in association using factor graph based data association scheme over JPDA has been demonstrated using a simulated scenario of closely moving targets. The steady state likelihood values obtained at the end of recursive process are shown to match the likelihoods obtained from measurements.\",\"PeriodicalId\":158295,\"journal\":{\"name\":\"2011 National Conference on Communications (NCC)\",\"volume\":\"40 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 National Conference on Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC.2011.5734703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2011.5734703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

跟踪近距离运动目标的有效性取决于解决关联测量-跟踪中的模糊性的能力。联合概率数据关联(JPDA)在跟踪近距离运动目标方面非常有效,但该方法容易受到轨迹合并的影响。本文提出的基于因子图(FG)的关联方案通过递归更新似然值避免了多个假设等价,从而避免了轨迹合并。通过一个近距离移动目标的模拟场景,验证了基于因子图的数据关联方案在JPDA上的改进。在递归过程结束时得到的稳态似然值与测量得到的似然值相匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effective data association scheme for tracking closely moving targets using factor graphs
Effectiveness of tracking closely moving targets depends on the capability to resolve the ambiguity in associating measurements-to-tracks. Joint probabilistic data association (JPDA) has been shown to be very effective in tracking closely moving objects, but the approach is susceptible to track coalescence. The factor graph (FG) based association scheme developed in this paper circumvents the track coalescence by avoiding multiple hypothesis equivalence with recursive updation of likelihood values. The improvement in association using factor graph based data association scheme over JPDA has been demonstrated using a simulated scenario of closely moving targets. The steady state likelihood values obtained at the end of recursive process are shown to match the likelihoods obtained from measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Copyright page Joint stream allocation and scheduling for single-user MIMO communication in WMNs New approach to joint MIMO precoding for 2-way AF relay systems Energy-aware data centre management Prediction of SINR improvement with a directional antenna or antenna array in a cellular system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1