无约束人脸检测和开放集人脸识别挑战

Manuel Günther, Peiyun Hu, C. Herrmann, Chi-Ho Chan, Min Jiang, Shufan Yang, A. Dhamija, Deva Ramanan, J. Beyerer, J. Kittler, Mohamad Al Jazaery, Mohammad Iqbal Nouyed, G. Guo, Cezary Stankiewicz, T. Boult
{"title":"无约束人脸检测和开放集人脸识别挑战","authors":"Manuel Günther, Peiyun Hu, C. Herrmann, Chi-Ho Chan, Min Jiang, Shufan Yang, A. Dhamija, Deva Ramanan, J. Beyerer, J. Kittler, Mohamad Al Jazaery, Mohammad Iqbal Nouyed, G. Guo, Cezary Stankiewicz, T. Boult","doi":"10.1109/BTAS.2017.8272759","DOIUrl":null,"url":null,"abstract":"Face detection and recognition benchmarks have shifted toward more difficult environments. The challenge presented in this paper addresses the next step in the direction of automatic detection and identification of people from outdoor surveillance cameras. While face detection has shown remarkable success in images collected from the web, surveillance cameras include more diverse occlusions, poses, weather conditions and image blur. Although face verification or closed-set face identification have surpassed human capabilities on some datasets, open-set identification is much more complex as it needs to reject both unknown identities and false accepts from the face detector. We show that unconstrained face detection can approach high detection rates albeit with moderate false accept rates. By contrast, open-set face recognition is currently weak and requires much more attention.","PeriodicalId":372008,"journal":{"name":"2017 IEEE International Joint Conference on Biometrics (IJCB)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Unconstrained Face Detection and Open-Set Face Recognition Challenge\",\"authors\":\"Manuel Günther, Peiyun Hu, C. Herrmann, Chi-Ho Chan, Min Jiang, Shufan Yang, A. Dhamija, Deva Ramanan, J. Beyerer, J. Kittler, Mohamad Al Jazaery, Mohammad Iqbal Nouyed, G. Guo, Cezary Stankiewicz, T. Boult\",\"doi\":\"10.1109/BTAS.2017.8272759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Face detection and recognition benchmarks have shifted toward more difficult environments. The challenge presented in this paper addresses the next step in the direction of automatic detection and identification of people from outdoor surveillance cameras. While face detection has shown remarkable success in images collected from the web, surveillance cameras include more diverse occlusions, poses, weather conditions and image blur. Although face verification or closed-set face identification have surpassed human capabilities on some datasets, open-set identification is much more complex as it needs to reject both unknown identities and false accepts from the face detector. We show that unconstrained face detection can approach high detection rates albeit with moderate false accept rates. By contrast, open-set face recognition is currently weak and requires much more attention.\",\"PeriodicalId\":372008,\"journal\":{\"name\":\"2017 IEEE International Joint Conference on Biometrics (IJCB)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BTAS.2017.8272759\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2017.8272759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

人脸检测和识别基准已经转向更困难的环境。本文提出的挑战解决了从户外监控摄像机自动检测和识别人员方向的下一步。虽然人脸检测在从网络上收集的图像中取得了显著的成功,但监控摄像头包括更多不同的遮挡、姿势、天气状况和图像模糊。虽然人脸验证或闭集人脸识别在某些数据集上已经超越了人类的能力,但开放集识别要复杂得多,因为它需要拒绝来自人脸检测器的未知身份和错误接受。我们表明,无约束的人脸检测可以接近高的检测率,尽管有中等的错误接受率。相比之下,开放集人脸识别目前是薄弱的,需要更多的关注。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unconstrained Face Detection and Open-Set Face Recognition Challenge
Face detection and recognition benchmarks have shifted toward more difficult environments. The challenge presented in this paper addresses the next step in the direction of automatic detection and identification of people from outdoor surveillance cameras. While face detection has shown remarkable success in images collected from the web, surveillance cameras include more diverse occlusions, poses, weather conditions and image blur. Although face verification or closed-set face identification have surpassed human capabilities on some datasets, open-set identification is much more complex as it needs to reject both unknown identities and false accepts from the face detector. We show that unconstrained face detection can approach high detection rates albeit with moderate false accept rates. By contrast, open-set face recognition is currently weak and requires much more attention.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accuracy evaluation of handwritten signature verification: Rethinking the random-skilled forgeries dichotomy SSERBC 2017: Sclera segmentation and eye recognition benchmarking competition Age and gender classification using local appearance descriptors from facial components Evaluation of a 3D-aided pose invariant 2D face recognition system Towards pre-alignment of near-infrared iris images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1