高斯广播信道的保密容量区域

Ghadamali Bagherikaram, A. Motahari, A. Khandani
{"title":"高斯广播信道的保密容量区域","authors":"Ghadamali Bagherikaram, A. Motahari, A. Khandani","doi":"10.1109/CISS.2009.5054708","DOIUrl":null,"url":null,"abstract":"In this paper, we first consider a scenario where a source node wishes to broadcast two confidential messages for two respective receivers, while a wire-taper also receives the transmitted signal. We assume that the signals are transmitted over additive white Gaussian noise channels. We characterize the secrecy capacity region of this channel. Our achievable coding scheme is based on superposition coding and the random binning. We refer to this scheme as Secret Superposition Coding. The converse proof combines the converse proof for the conventional Gaussian broadcast channel and the perfect secrecy constraint. This capacity region matches the capacity region of the broadcast channel without security constraint. It also matches the secrecy capacity of the wire-tap channel. Based on the rate characterization of the secure Gaussian broadcast channel, we then use a multilevel coding approach for the slowly fading wire-tap. We assume that the transmitter only knows the eavesdropper's channel. In this approach, source node sends secure layered coding and the receiver viewed as a continuum ordered users. We derive optimum power allocation for the layers which maximizes the total average rate.","PeriodicalId":433796,"journal":{"name":"2009 43rd Annual Conference on Information Sciences and Systems","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":"{\"title\":\"Secrecy capacity region of Gaussian broadcast channel\",\"authors\":\"Ghadamali Bagherikaram, A. Motahari, A. Khandani\",\"doi\":\"10.1109/CISS.2009.5054708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we first consider a scenario where a source node wishes to broadcast two confidential messages for two respective receivers, while a wire-taper also receives the transmitted signal. We assume that the signals are transmitted over additive white Gaussian noise channels. We characterize the secrecy capacity region of this channel. Our achievable coding scheme is based on superposition coding and the random binning. We refer to this scheme as Secret Superposition Coding. The converse proof combines the converse proof for the conventional Gaussian broadcast channel and the perfect secrecy constraint. This capacity region matches the capacity region of the broadcast channel without security constraint. It also matches the secrecy capacity of the wire-tap channel. Based on the rate characterization of the secure Gaussian broadcast channel, we then use a multilevel coding approach for the slowly fading wire-tap. We assume that the transmitter only knows the eavesdropper's channel. In this approach, source node sends secure layered coding and the receiver viewed as a continuum ordered users. We derive optimum power allocation for the layers which maximizes the total average rate.\",\"PeriodicalId\":433796,\"journal\":{\"name\":\"2009 43rd Annual Conference on Information Sciences and Systems\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 43rd Annual Conference on Information Sciences and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS.2009.5054708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 43rd Annual Conference on Information Sciences and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2009.5054708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

摘要

在本文中,我们首先考虑这样一种场景:一个源节点希望为两个各自的接收器广播两个机密消息,而一个线锥也接收发送的信号。我们假设信号在加性高斯白噪声信道上传输。我们描述了该信道的保密容量区域。我们的可实现的编码方案是基于叠加编码和随机分组。我们把这种方案称为秘密叠加编码。反向证明结合了传统高斯广播信道的反向证明和完全保密约束。此容量区域与无安全约束的广播信道的容量区域相匹配。这也符合窃听频道的保密能力。基于安全高斯广播信道的速率特性,我们对慢衰落窃听采用了多电平编码方法。我们假设发射机只知道窃听者的频道。在这种方法中,源节点发送安全分层编码,接收端视为连续有序的用户。我们得到了使总平均速率最大化的各层的最优功率分配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Secrecy capacity region of Gaussian broadcast channel
In this paper, we first consider a scenario where a source node wishes to broadcast two confidential messages for two respective receivers, while a wire-taper also receives the transmitted signal. We assume that the signals are transmitted over additive white Gaussian noise channels. We characterize the secrecy capacity region of this channel. Our achievable coding scheme is based on superposition coding and the random binning. We refer to this scheme as Secret Superposition Coding. The converse proof combines the converse proof for the conventional Gaussian broadcast channel and the perfect secrecy constraint. This capacity region matches the capacity region of the broadcast channel without security constraint. It also matches the secrecy capacity of the wire-tap channel. Based on the rate characterization of the secure Gaussian broadcast channel, we then use a multilevel coding approach for the slowly fading wire-tap. We assume that the transmitter only knows the eavesdropper's channel. In this approach, source node sends secure layered coding and the receiver viewed as a continuum ordered users. We derive optimum power allocation for the layers which maximizes the total average rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Molecular recognition as an information channel: The role of conformational changes Extrinsic tree decoding Message transmission and state estimation over Gaussian broadcast channels Iteratively re-weighted least squares for sparse signal reconstruction from noisy measurements Speech enhancement using the multistage Wiener filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1