{"title":"基于光纤通信链路的单片机/WDM系统模型","authors":"M. Arief, S. M. Idrus, S. Alifah","doi":"10.1109/RFM.2008.4897427","DOIUrl":null,"url":null,"abstract":"Subcarrier Multiplexing (SCM) is multiple radio frequency (RF) carrying signal to transmit through optical fiber using single wavelength. The most significant advantage of SCM in optical communications is its ability to place different optical carriers together closely. On the other hand, Wavelength Division Multiplexing (WDM) is a multiplexer at the transmitter to join the signals together, and a demultiplexer at the receiver to split them apart. In WDM each laser is modulated at a given speed, and the total aggregate capacity being transmitted along the high-bandwidth fiber is the sum total of the bit rates of the individual lasers. In this work, we investigate various issues in this scenario in order to provide a cost-effective, high performance solution for high speed data rates by the available bandwidth of the electrical and optical components. Therefore, SCM must be used in conjunction with WDM to utilize any significant fraction of the fiber bandwidth. The results is present higher bandwidth for long distance communication system (SMF, 150 km) by using SCM/WDM for Radio over Fiber. Therefore, the efficiency of bandwidth utilization of SCM is expected to be much better than conventional optical WDM.","PeriodicalId":329128,"journal":{"name":"2008 IEEE International RF and Microwave Conference","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"The SCM/WDM system model for radio over fiber communication link\",\"authors\":\"M. Arief, S. M. Idrus, S. Alifah\",\"doi\":\"10.1109/RFM.2008.4897427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Subcarrier Multiplexing (SCM) is multiple radio frequency (RF) carrying signal to transmit through optical fiber using single wavelength. The most significant advantage of SCM in optical communications is its ability to place different optical carriers together closely. On the other hand, Wavelength Division Multiplexing (WDM) is a multiplexer at the transmitter to join the signals together, and a demultiplexer at the receiver to split them apart. In WDM each laser is modulated at a given speed, and the total aggregate capacity being transmitted along the high-bandwidth fiber is the sum total of the bit rates of the individual lasers. In this work, we investigate various issues in this scenario in order to provide a cost-effective, high performance solution for high speed data rates by the available bandwidth of the electrical and optical components. Therefore, SCM must be used in conjunction with WDM to utilize any significant fraction of the fiber bandwidth. The results is present higher bandwidth for long distance communication system (SMF, 150 km) by using SCM/WDM for Radio over Fiber. Therefore, the efficiency of bandwidth utilization of SCM is expected to be much better than conventional optical WDM.\",\"PeriodicalId\":329128,\"journal\":{\"name\":\"2008 IEEE International RF and Microwave Conference\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International RF and Microwave Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RFM.2008.4897427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International RF and Microwave Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFM.2008.4897427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The SCM/WDM system model for radio over fiber communication link
Subcarrier Multiplexing (SCM) is multiple radio frequency (RF) carrying signal to transmit through optical fiber using single wavelength. The most significant advantage of SCM in optical communications is its ability to place different optical carriers together closely. On the other hand, Wavelength Division Multiplexing (WDM) is a multiplexer at the transmitter to join the signals together, and a demultiplexer at the receiver to split them apart. In WDM each laser is modulated at a given speed, and the total aggregate capacity being transmitted along the high-bandwidth fiber is the sum total of the bit rates of the individual lasers. In this work, we investigate various issues in this scenario in order to provide a cost-effective, high performance solution for high speed data rates by the available bandwidth of the electrical and optical components. Therefore, SCM must be used in conjunction with WDM to utilize any significant fraction of the fiber bandwidth. The results is present higher bandwidth for long distance communication system (SMF, 150 km) by using SCM/WDM for Radio over Fiber. Therefore, the efficiency of bandwidth utilization of SCM is expected to be much better than conventional optical WDM.