阿拉伯文本中网络欺凌和骚扰检测的数据挖掘

Eman Bashir, M. Bouguessa
{"title":"阿拉伯文本中网络欺凌和骚扰检测的数据挖掘","authors":"Eman Bashir, M. Bouguessa","doi":"10.5815/ijitcs.2021.05.04","DOIUrl":null,"url":null,"abstract":"Broadly cyberbullying is viewed as a severe social danger that influences many individuals around the globe, particularly young people and teenagers. The Arabic world has embraced technology and continues using it in different ways to communicate inside social media platforms. However, the Arabic text has drawbacks for its complexity, challenges, and scarcity of its resources. This paper investigates several questions related to the content of how to protect an Arabic text from cyberbullying/harassment through the information posted on Twitter. To answer this question, we collected the Arab corpus covering the topics with specific words, which will explain in detail. We devised experiments in which we investigated several learning approaches. Our results suggest that deep learning models like LSTM achieve better performance compared to other traditional yberbullying classifiers with an accuracy of 72%.","PeriodicalId":130361,"journal":{"name":"International Journal of Information Technology and Computer Science","volume":"478 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Data Mining for Cyberbullying and Harassment Detection in Arabic Texts\",\"authors\":\"Eman Bashir, M. Bouguessa\",\"doi\":\"10.5815/ijitcs.2021.05.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Broadly cyberbullying is viewed as a severe social danger that influences many individuals around the globe, particularly young people and teenagers. The Arabic world has embraced technology and continues using it in different ways to communicate inside social media platforms. However, the Arabic text has drawbacks for its complexity, challenges, and scarcity of its resources. This paper investigates several questions related to the content of how to protect an Arabic text from cyberbullying/harassment through the information posted on Twitter. To answer this question, we collected the Arab corpus covering the topics with specific words, which will explain in detail. We devised experiments in which we investigated several learning approaches. Our results suggest that deep learning models like LSTM achieve better performance compared to other traditional yberbullying classifiers with an accuracy of 72%.\",\"PeriodicalId\":130361,\"journal\":{\"name\":\"International Journal of Information Technology and Computer Science\",\"volume\":\"478 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Technology and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5815/ijitcs.2021.05.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijitcs.2021.05.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

总的来说,网络欺凌被视为一种严重的社会危险,影响着全球许多人,特别是年轻人和青少年。阿拉伯世界已经接受了科技,并继续以不同的方式在社交媒体平台上进行交流。然而,阿拉伯文由于其复杂性、挑战性和资源的稀缺性而存在缺陷。本文调查了几个与如何通过Twitter上发布的信息保护阿拉伯文本免受网络欺凌/骚扰相关的问题。为了回答这个问题,我们收集了阿拉伯语料库,涵盖了特定词汇的主题,这将详细解释。我们设计了一些实验,研究了几种学习方法。我们的研究结果表明,与其他传统的网络欺凌分类器相比,像LSTM这样的深度学习模型获得了更好的性能,准确率为72%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data Mining for Cyberbullying and Harassment Detection in Arabic Texts
Broadly cyberbullying is viewed as a severe social danger that influences many individuals around the globe, particularly young people and teenagers. The Arabic world has embraced technology and continues using it in different ways to communicate inside social media platforms. However, the Arabic text has drawbacks for its complexity, challenges, and scarcity of its resources. This paper investigates several questions related to the content of how to protect an Arabic text from cyberbullying/harassment through the information posted on Twitter. To answer this question, we collected the Arab corpus covering the topics with specific words, which will explain in detail. We devised experiments in which we investigated several learning approaches. Our results suggest that deep learning models like LSTM achieve better performance compared to other traditional yberbullying classifiers with an accuracy of 72%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Healthcare Provision in Conflict Zones: Queuing System Models for Mobile and Flexible Medical Care Units with a Limited Number of Treatment Stations A Machine Learning Based Intelligent Diabetic and Hypertensive Patient Prediction Scheme and A Mobile Application for Patients Assistance Mimicking Nature: Analysis of Dragonfly Pursuit Strategies Using LSTM and Kalman Filter Securing the Internet of Things: Evaluating Machine Learning Algorithms for Detecting IoT Cyberattacks Using CIC-IoT2023 Dataset Analyzing Test Performance of BSIT Students and Question Quality: A Study on Item Difficulty Index and Item Discrimination Index for Test Question Improvement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1