无界区域粘性边界层流动的最优同伦渐近方法

R. Ene, V. Marinca, R. Negrea
{"title":"无界区域粘性边界层流动的最优同伦渐近方法","authors":"R. Ene, V. Marinca, R. Negrea","doi":"10.1109/SYNASC.2014.22","DOIUrl":null,"url":null,"abstract":"This paper is concerned on analytical treatment of non-linear differential equation of a viscous boundary layer flow due to a moving sheet. An analytic approximate technique, namely Optimal Homotopy Asymptotic Method (OHAM) is employed into a new version for this purpose. It is proved that OHAM provide accurate solution for the nonlinear differential equation of the third-order with initial and boundary conditions. Our procedure provides us with a convenient way to optimally control the convergence of the solution, such that the accuracy is always guaranteed. An excellent agreement of the approximate solution with the numerical results has been demonstrated. This work shows the general validity and the great potential of the OHAM for solving strongly nonlinear differential equation.","PeriodicalId":150575,"journal":{"name":"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Optimal Homotopy Asymptotic Method for Viscous Boundary Layer Flow in Unbounded Domain\",\"authors\":\"R. Ene, V. Marinca, R. Negrea\",\"doi\":\"10.1109/SYNASC.2014.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned on analytical treatment of non-linear differential equation of a viscous boundary layer flow due to a moving sheet. An analytic approximate technique, namely Optimal Homotopy Asymptotic Method (OHAM) is employed into a new version for this purpose. It is proved that OHAM provide accurate solution for the nonlinear differential equation of the third-order with initial and boundary conditions. Our procedure provides us with a convenient way to optimally control the convergence of the solution, such that the accuracy is always guaranteed. An excellent agreement of the approximate solution with the numerical results has been demonstrated. This work shows the general validity and the great potential of the OHAM for solving strongly nonlinear differential equation.\",\"PeriodicalId\":150575,\"journal\":{\"name\":\"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2014.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2014.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了移动薄板作用下粘性边界层流动非线性微分方程的解析处理。在此基础上,提出了一种新的解析近似方法,即最优同伦渐近法。证明了具有初始条件和边界条件的三阶非线性微分方程的精确解。该方法为优化控制解的收敛性提供了一种方便的方法,从而保证了解的精度。结果表明,近似解与数值结果非常吻合。这项工作显示了OHAM在求解强非线性微分方程方面的普遍有效性和巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal Homotopy Asymptotic Method for Viscous Boundary Layer Flow in Unbounded Domain
This paper is concerned on analytical treatment of non-linear differential equation of a viscous boundary layer flow due to a moving sheet. An analytic approximate technique, namely Optimal Homotopy Asymptotic Method (OHAM) is employed into a new version for this purpose. It is proved that OHAM provide accurate solution for the nonlinear differential equation of the third-order with initial and boundary conditions. Our procedure provides us with a convenient way to optimally control the convergence of the solution, such that the accuracy is always guaranteed. An excellent agreement of the approximate solution with the numerical results has been demonstrated. This work shows the general validity and the great potential of the OHAM for solving strongly nonlinear differential equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluating Weighted Round Robin Load Balancing for Cloud Web Services Lipschitz Bounds for Noise Robustness in Compressive Sensing: Two Algorithms Open and Interoperable Socio-technical Networks Computing Homological Information Based on Directed Graphs within Discrete Objects Automated Synthesis of Target-Dependent Programs for Polynomial Evaluation in Fixed-Point Arithmetic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1