基于变压器的边缘实时目标检测:基准研究

Colin Samplawski, Benjamin M. Marlin
{"title":"基于变压器的边缘实时目标检测:基准研究","authors":"Colin Samplawski, Benjamin M. Marlin","doi":"10.1109/MILCOM52596.2021.9653052","DOIUrl":null,"url":null,"abstract":"Recent work has demonstrated the success of end-to-end transformer-based object detection models. These models achieve predictive performance that is competitive with current state-of-the-art detection model frameworks without many of the hand-crafted components needed by previous models (such as non-maximal suppression and anchor boxes). In this paper, we provide the first benchmarking study of transformer-based detection models focused on real-time and edge deployment. We show that transformer-based detection model architectures can achieve 30FPS detection rates on NVIDIA Jetson edge hardware and exceed 40FPS on desktop hardware. However, we observe that achieving these latency levels within the design space that we specify results in a drop in predictive performance, particularly on smaller objects. We conclude by discussing potential next steps for improving the edge and IoT deployment performance of this interesting new class of models.","PeriodicalId":187645,"journal":{"name":"MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Towards Transformer-Based Real-Time Object Detection at the Edge: A Benchmarking Study\",\"authors\":\"Colin Samplawski, Benjamin M. Marlin\",\"doi\":\"10.1109/MILCOM52596.2021.9653052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent work has demonstrated the success of end-to-end transformer-based object detection models. These models achieve predictive performance that is competitive with current state-of-the-art detection model frameworks without many of the hand-crafted components needed by previous models (such as non-maximal suppression and anchor boxes). In this paper, we provide the first benchmarking study of transformer-based detection models focused on real-time and edge deployment. We show that transformer-based detection model architectures can achieve 30FPS detection rates on NVIDIA Jetson edge hardware and exceed 40FPS on desktop hardware. However, we observe that achieving these latency levels within the design space that we specify results in a drop in predictive performance, particularly on smaller objects. We conclude by discussing potential next steps for improving the edge and IoT deployment performance of this interesting new class of models.\",\"PeriodicalId\":187645,\"journal\":{\"name\":\"MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MILCOM52596.2021.9653052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM52596.2021.9653052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

最近的工作已经证明了端到端基于变压器的目标检测模型的成功。这些模型实现了与当前最先进的检测模型框架竞争的预测性能,而不需要以前模型所需的许多手工制作的组件(例如非最大抑制和锚盒)。在本文中,我们提供了基于变压器的检测模型的第一个基准研究,重点是实时和边缘部署。我们展示了基于变压器的检测模型架构可以在NVIDIA Jetson边缘硬件上实现30FPS的检测率,在桌面硬件上超过40FPS。然而,我们观察到,在我们指定的设计空间内实现这些延迟水平会导致预测性能下降,特别是在较小的对象上。最后,我们讨论了改进这类有趣的新型模型的边缘和物联网部署性能的潜在后续步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards Transformer-Based Real-Time Object Detection at the Edge: A Benchmarking Study
Recent work has demonstrated the success of end-to-end transformer-based object detection models. These models achieve predictive performance that is competitive with current state-of-the-art detection model frameworks without many of the hand-crafted components needed by previous models (such as non-maximal suppression and anchor boxes). In this paper, we provide the first benchmarking study of transformer-based detection models focused on real-time and edge deployment. We show that transformer-based detection model architectures can achieve 30FPS detection rates on NVIDIA Jetson edge hardware and exceed 40FPS on desktop hardware. However, we observe that achieving these latency levels within the design space that we specify results in a drop in predictive performance, particularly on smaller objects. We conclude by discussing potential next steps for improving the edge and IoT deployment performance of this interesting new class of models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RF-based Network Inference: Theoretical Foundations Security Threats Analysis of the Unmanned Aerial Vehicle System Using Distributed Ledgers For Command and Control – Concepts and Challenges DerechoDDS: Strongly Consistent Data Distribution for Mission-Critical Applications CUE: A Standalone Testbed for 5G Experimentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1