有监督和无监督深度学习在视觉SLAM中的应用综述

U. Ukaegbu, L. Tartibu, Chee Wah Lim
{"title":"有监督和无监督深度学习在视觉SLAM中的应用综述","authors":"U. Ukaegbu, L. Tartibu, Chee Wah Lim","doi":"10.1115/imece2022-95685","DOIUrl":null,"url":null,"abstract":"\n Visual Simultaneous Localization and Mapping (V-SLAM) is a trending robotics research concept as well as the basis for autonomous and smart navigation. It is an integral part of vision-based applications which include virtual reality, unmanned aerial vehicles, augmented reality, and unmanned ground vehicles. V-SLAM carries out localization and mapping by learning relevant feature points from images and estimating their pose based on the correlation between the camera and the feature points. It also represents the ability of a robot to effectively navigate itself, employing visual sensors and prior information of the given location, in an uncharted environment while updating and constructing a coordinated map of the scene. However, due to the challenges of data association triggered by illumination, different viewpoints and environment dynamics, there has been rapid adoption of deep learning in the area of feature extraction/description, pose/depth estimation, mapping, loop closure detection and global optimization as it concerns visual SLAM. This paper sets out to elucidate diverse applications of supervised and unsupervised deep learning methods in all aspects of visual SLAM. It also briefly explains a case study regarding the application of both deep learning and SLAM for underground mining applications. It highlights recent research developments in addition to limitations hindering their effective application and investigates how a combination of deep learning with other methods offers a promising direction for visual SLAM research.","PeriodicalId":146276,"journal":{"name":"Volume 3: Advanced Materials: Design, Processing, Characterization and Applications; Advances in Aerospace Technology","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supervised and Unsupervised Deep Learning Applications for Visual SLAM: A Review\",\"authors\":\"U. Ukaegbu, L. Tartibu, Chee Wah Lim\",\"doi\":\"10.1115/imece2022-95685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Visual Simultaneous Localization and Mapping (V-SLAM) is a trending robotics research concept as well as the basis for autonomous and smart navigation. It is an integral part of vision-based applications which include virtual reality, unmanned aerial vehicles, augmented reality, and unmanned ground vehicles. V-SLAM carries out localization and mapping by learning relevant feature points from images and estimating their pose based on the correlation between the camera and the feature points. It also represents the ability of a robot to effectively navigate itself, employing visual sensors and prior information of the given location, in an uncharted environment while updating and constructing a coordinated map of the scene. However, due to the challenges of data association triggered by illumination, different viewpoints and environment dynamics, there has been rapid adoption of deep learning in the area of feature extraction/description, pose/depth estimation, mapping, loop closure detection and global optimization as it concerns visual SLAM. This paper sets out to elucidate diverse applications of supervised and unsupervised deep learning methods in all aspects of visual SLAM. It also briefly explains a case study regarding the application of both deep learning and SLAM for underground mining applications. It highlights recent research developments in addition to limitations hindering their effective application and investigates how a combination of deep learning with other methods offers a promising direction for visual SLAM research.\",\"PeriodicalId\":146276,\"journal\":{\"name\":\"Volume 3: Advanced Materials: Design, Processing, Characterization and Applications; Advances in Aerospace Technology\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 3: Advanced Materials: Design, Processing, Characterization and Applications; Advances in Aerospace Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2022-95685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Advanced Materials: Design, Processing, Characterization and Applications; Advances in Aerospace Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2022-95685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

视觉同步定位与映射(V-SLAM)是机器人技术研究的一个趋势,也是实现自主和智能导航的基础。它是基于视觉的应用的一个组成部分,包括虚拟现实、无人机、增强现实和无人驾驶地面车辆。V-SLAM通过从图像中学习相关特征点,并根据相机与特征点之间的相关性估计其姿态,进行定位和映射。它还代表了机器人在未知环境中利用视觉传感器和给定位置的先验信息有效导航的能力,同时更新和构建场景的协调地图。然而,由于光照、不同视角和环境动态引发的数据关联挑战,深度学习在涉及视觉SLAM的特征提取/描述、姿态/深度估计、映射、闭环检测和全局优化等领域得到了迅速的应用。本文旨在阐明有监督和无监督深度学习方法在视觉SLAM各个方面的不同应用。它还简要解释了一个关于深度学习和SLAM在地下采矿应用中的应用的案例研究。它强调了最近的研究进展以及阻碍其有效应用的局限性,并研究了深度学习与其他方法的结合如何为视觉SLAM研究提供了一个有前途的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Supervised and Unsupervised Deep Learning Applications for Visual SLAM: A Review
Visual Simultaneous Localization and Mapping (V-SLAM) is a trending robotics research concept as well as the basis for autonomous and smart navigation. It is an integral part of vision-based applications which include virtual reality, unmanned aerial vehicles, augmented reality, and unmanned ground vehicles. V-SLAM carries out localization and mapping by learning relevant feature points from images and estimating their pose based on the correlation between the camera and the feature points. It also represents the ability of a robot to effectively navigate itself, employing visual sensors and prior information of the given location, in an uncharted environment while updating and constructing a coordinated map of the scene. However, due to the challenges of data association triggered by illumination, different viewpoints and environment dynamics, there has been rapid adoption of deep learning in the area of feature extraction/description, pose/depth estimation, mapping, loop closure detection and global optimization as it concerns visual SLAM. This paper sets out to elucidate diverse applications of supervised and unsupervised deep learning methods in all aspects of visual SLAM. It also briefly explains a case study regarding the application of both deep learning and SLAM for underground mining applications. It highlights recent research developments in addition to limitations hindering their effective application and investigates how a combination of deep learning with other methods offers a promising direction for visual SLAM research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical Analysis of Strain Rate Dependency of the Mechanical Properties of Unidirectional CFRE Materials Thermo-Mechanical Process Modeling of Additive Friction Stir Deposition of Ti-6Al-4V Alloy Nonlinear Transient Response of Isotropic and Composite Structures With Variable Kinematic Beam and Plate Finite Elements Bolt Loosening Detection for a Steel Frame Multi-Story Structure Based on Deep Learning and Digital Image Processing Preparation of Hybrid Alkaline Cement Based on Natural Zeolite As Sustainable Building Material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1