基于GPU平台的RF-PSS分析结构化并行周期Arnoldi射击算法

Xuexin Liu, Hao Yu, Jacob Relles, S. Tan
{"title":"基于GPU平台的RF-PSS分析结构化并行周期Arnoldi射击算法","authors":"Xuexin Liu, Hao Yu, Jacob Relles, S. Tan","doi":"10.1109/ASPDAC.2011.5722172","DOIUrl":null,"url":null,"abstract":"The recent multi/many-core CPUs or GPUs have provided an ideal parallel computing platform to accelerate the time-consuming analysis of radio-frequency/millimeter-wave (RF/ MM) integrated circuit (IC). This paper develops a structured shooting algorithm that can fully take advantage of parallelism in periodic steady state (PSS) analysis. Utilizing periodic structure of the state matrix of RF/ MM-IC simulation, a cyclic-block-structured shooting-Newton method has been parallelized and mapped onto recent GPU platforms. We first present the formulation of the parallel cyclic-block-structured shooting-Newton algorithm, called periodic Arnoldi shooting method. Then we will present its parallel implementation details on GPU. Results from several industrial examples show that the structured parallel shooting-Newton method on Tesla's GPU can lead to speedups of more than 20× compared to the state-of-the-art implicit GMRES methods under the same accuracy on the CPU.","PeriodicalId":316253,"journal":{"name":"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A structured parallel periodic Arnoldi shooting algorithm for RF-PSS analysis based on GPU platforms\",\"authors\":\"Xuexin Liu, Hao Yu, Jacob Relles, S. Tan\",\"doi\":\"10.1109/ASPDAC.2011.5722172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent multi/many-core CPUs or GPUs have provided an ideal parallel computing platform to accelerate the time-consuming analysis of radio-frequency/millimeter-wave (RF/ MM) integrated circuit (IC). This paper develops a structured shooting algorithm that can fully take advantage of parallelism in periodic steady state (PSS) analysis. Utilizing periodic structure of the state matrix of RF/ MM-IC simulation, a cyclic-block-structured shooting-Newton method has been parallelized and mapped onto recent GPU platforms. We first present the formulation of the parallel cyclic-block-structured shooting-Newton algorithm, called periodic Arnoldi shooting method. Then we will present its parallel implementation details on GPU. Results from several industrial examples show that the structured parallel shooting-Newton method on Tesla's GPU can lead to speedups of more than 20× compared to the state-of-the-art implicit GMRES methods under the same accuracy on the CPU.\",\"PeriodicalId\":316253,\"journal\":{\"name\":\"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPDAC.2011.5722172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2011.5722172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

近年来的多核cpu或gpu为加速射频/毫米波(RF/ MM)集成电路(IC)的耗时分析提供了理想的并行计算平台。本文提出了一种充分利用周期稳态分析中并行性的结构化射击算法。利用RF/ MM-IC仿真状态矩阵的周期结构,将循环块结构射击牛顿方法并行化并映射到最新的GPU平台上。首先提出了一种并行循环块结构射击牛顿算法,称为周期Arnoldi射击法。然后,我们将介绍其在GPU上的并行实现细节。几个工业实例的结果表明,在CPU上相同精度的情况下,与最先进的隐式GMRES方法相比,特斯拉GPU上的结构化并行射击-牛顿方法的速度提高了20倍以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A structured parallel periodic Arnoldi shooting algorithm for RF-PSS analysis based on GPU platforms
The recent multi/many-core CPUs or GPUs have provided an ideal parallel computing platform to accelerate the time-consuming analysis of radio-frequency/millimeter-wave (RF/ MM) integrated circuit (IC). This paper develops a structured shooting algorithm that can fully take advantage of parallelism in periodic steady state (PSS) analysis. Utilizing periodic structure of the state matrix of RF/ MM-IC simulation, a cyclic-block-structured shooting-Newton method has been parallelized and mapped onto recent GPU platforms. We first present the formulation of the parallel cyclic-block-structured shooting-Newton algorithm, called periodic Arnoldi shooting method. Then we will present its parallel implementation details on GPU. Results from several industrial examples show that the structured parallel shooting-Newton method on Tesla's GPU can lead to speedups of more than 20× compared to the state-of-the-art implicit GMRES methods under the same accuracy on the CPU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Register pressure aware scheduling for high level synthesis Robust and efficient baseband receiver design for MB-OFDM UWB system Area-efficient FPGA logic elements: Architecture and synthesis Utilizing high level design information to speed up post-silicon debugging Device-parameter estimation with on-chip variation sensors considering random variability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1