基于互子空间修剪方法的超低分辨率字符识别系统

Shuhei Toba, H. Kudo, Tomo Miyazaki, Yoshihiro Sugaya, S. Omachi
{"title":"基于互子空间修剪方法的超低分辨率字符识别系统","authors":"Shuhei Toba, H. Kudo, Tomo Miyazaki, Yoshihiro Sugaya, S. Omachi","doi":"10.1109/ICCE-TW.2015.7216900","DOIUrl":null,"url":null,"abstract":"Improvement of character recognition technology brings us various character recognition applications for mobile camera. However, many low-resolution and poor-quality character images exist due to the performance of the camera or the influence of environment, and existing methods are not good at recognizing those low-resolution characters. Therefore, we develop a character recognition system for ultra-low resolution character images less than 20*20 pixels. The proposed system consists of three phases: increased training data with a generative learning method, creating a deblurred high-resolution image with Wiener filter and image alignment, and recognition by pruning Mutual Subspace Method.","PeriodicalId":340402,"journal":{"name":"2015 IEEE International Conference on Consumer Electronics - Taiwan","volume":"62 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Ultra-low resolution character recognition system with pruning mutual subspace method\",\"authors\":\"Shuhei Toba, H. Kudo, Tomo Miyazaki, Yoshihiro Sugaya, S. Omachi\",\"doi\":\"10.1109/ICCE-TW.2015.7216900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Improvement of character recognition technology brings us various character recognition applications for mobile camera. However, many low-resolution and poor-quality character images exist due to the performance of the camera or the influence of environment, and existing methods are not good at recognizing those low-resolution characters. Therefore, we develop a character recognition system for ultra-low resolution character images less than 20*20 pixels. The proposed system consists of three phases: increased training data with a generative learning method, creating a deblurred high-resolution image with Wiener filter and image alignment, and recognition by pruning Mutual Subspace Method.\",\"PeriodicalId\":340402,\"journal\":{\"name\":\"2015 IEEE International Conference on Consumer Electronics - Taiwan\",\"volume\":\"62 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Consumer Electronics - Taiwan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-TW.2015.7216900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Consumer Electronics - Taiwan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-TW.2015.7216900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

字符识别技术的进步为移动相机带来了各种各样的字符识别应用。然而,由于相机的性能或环境的影响,存在许多低分辨率和低质量的字符图像,现有的方法并不擅长识别这些低分辨率字符。因此,我们开发了一个针对20*20像素以下的超低分辨率字符图像的字符识别系统。该系统包括三个阶段:使用生成式学习方法增加训练数据,使用维纳滤波和图像对齐创建去模糊的高分辨率图像,以及通过修剪互子空间方法进行识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ultra-low resolution character recognition system with pruning mutual subspace method
Improvement of character recognition technology brings us various character recognition applications for mobile camera. However, many low-resolution and poor-quality character images exist due to the performance of the camera or the influence of environment, and existing methods are not good at recognizing those low-resolution characters. Therefore, we develop a character recognition system for ultra-low resolution character images less than 20*20 pixels. The proposed system consists of three phases: increased training data with a generative learning method, creating a deblurred high-resolution image with Wiener filter and image alignment, and recognition by pruning Mutual Subspace Method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A fuzzy-rough set based ontology for hybrid recommendation Monitoring system of patient position based on wireless body area sensor network Automation control algorithms in gas mixture for preterm infant oxygen therapy Interframe hole filling for DIBR in 3D videos Automatic recognition of audio event using dynamic local binary patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1