蛋白质-蛋白质复合物中结合位点残基的序列和结构特征

M. Gromiha, N. Saranya, S. Selvaraj, B. Jayaram, K. Fukui
{"title":"蛋白质-蛋白质复合物中结合位点残基的序列和结构特征","authors":"M. Gromiha, N. Saranya, S. Selvaraj, B. Jayaram, K. Fukui","doi":"10.1109/BIBM.2010.5706535","DOIUrl":null,"url":null,"abstract":"We have developed an energy based approach for identifying the binding site residues in protein-protein complexes. The binding site residues have been analyzed with sequence and structure based parameters such as neighboring residues in the vicinity of binding sites and conformational switching. We observed specific preferences of dipeptides and tripeptides for binding, which is unique to proteinprotein complexes. Our analysis showed that 7% of residues changed their conformations upon proteinprotein complex formation and it is 9.2% and 6.6% in the binding and non-binding sites, respectively. Specifically, the residues Glu, Lys, Leu and Ser changed their conformation from coil to helix/strand and from helix to coil/strand. Leu, Ser, Thr and Val prefer to change their conformation from strand to coil/helix. The results obtained in this study will be helpful for understanding and predicting the binding sites in protein-protein complexes.","PeriodicalId":275098,"journal":{"name":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sequence and structural features of binding site residues in protein-protein complexes\",\"authors\":\"M. Gromiha, N. Saranya, S. Selvaraj, B. Jayaram, K. Fukui\",\"doi\":\"10.1109/BIBM.2010.5706535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have developed an energy based approach for identifying the binding site residues in protein-protein complexes. The binding site residues have been analyzed with sequence and structure based parameters such as neighboring residues in the vicinity of binding sites and conformational switching. We observed specific preferences of dipeptides and tripeptides for binding, which is unique to proteinprotein complexes. Our analysis showed that 7% of residues changed their conformations upon proteinprotein complex formation and it is 9.2% and 6.6% in the binding and non-binding sites, respectively. Specifically, the residues Glu, Lys, Leu and Ser changed their conformation from coil to helix/strand and from helix to coil/strand. Leu, Ser, Thr and Val prefer to change their conformation from strand to coil/helix. The results obtained in this study will be helpful for understanding and predicting the binding sites in protein-protein complexes.\",\"PeriodicalId\":275098,\"journal\":{\"name\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2010.5706535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2010.5706535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们已经开发了一种基于能量的方法来识别蛋白质-蛋白质复合物中的结合位点残基。结合位点残基的序列和结构参数包括结合位点附近的邻近残基和构象开关。我们观察到二肽和三肽结合的特定偏好,这是蛋白质蛋白质复合物所特有的。我们的分析表明,7%的残基在蛋白质复合物形成时改变了它们的构象,在结合位点和非结合位点分别为9.2%和6.6%。其中,Glu、Lys、Leu和Ser的构象由螺旋变为螺旋/链,由螺旋变为螺旋/链。Leu, Ser, Thr和Val倾向于将它们的构象从股状变为螺旋状。本研究结果将有助于理解和预测蛋白质-蛋白质复合物的结合位点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sequence and structural features of binding site residues in protein-protein complexes
We have developed an energy based approach for identifying the binding site residues in protein-protein complexes. The binding site residues have been analyzed with sequence and structure based parameters such as neighboring residues in the vicinity of binding sites and conformational switching. We observed specific preferences of dipeptides and tripeptides for binding, which is unique to proteinprotein complexes. Our analysis showed that 7% of residues changed their conformations upon proteinprotein complex formation and it is 9.2% and 6.6% in the binding and non-binding sites, respectively. Specifically, the residues Glu, Lys, Leu and Ser changed their conformation from coil to helix/strand and from helix to coil/strand. Leu, Ser, Thr and Val prefer to change their conformation from strand to coil/helix. The results obtained in this study will be helpful for understanding and predicting the binding sites in protein-protein complexes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A gene ranking method using text-mining for the identification of disease related genes alns — A searchable and filterable sequence alignment format A fast and noise-adaptive rough-fuzzy hybrid algorithm for medical image segmentation An accurate, automatic method for markerless alignment of electron tomographic images Unsupervised integration of multiple protein disorder predictors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1