结合稀疏外观和贝叶斯推理模型的目标跟踪

Zhengqiang Jiang, Benlian Xu, Shengrong Gong
{"title":"结合稀疏外观和贝叶斯推理模型的目标跟踪","authors":"Zhengqiang Jiang, Benlian Xu, Shengrong Gong","doi":"10.1109/ICCAIS.2016.7822439","DOIUrl":null,"url":null,"abstract":"In this paper, we present a method that combines a sparse appearance model into the Bayesian inference framework for tracking pedestrians in video sequences captured by a fixed camera. We formulate sparse appearance model as a linear combination of a set of 4D smoothed colour histograms for each pedestrian. These colour histograms are computed for all detection windows with different confidence values from human detector proposed by Dalal and Triggs. Object tracking is carried out using the Bayesian inference method. For occlusion handling, we integrate the Kalman filter to get the potential region containing target's observation and then use maximum a posteriori estimation to get the most likely observation. We test our tracking method on the benchmark video datasets. Our experimental results show that our tracking method outperforms one without using occlusion handling technique and can handle partial occlusion and false negative errors from human detector.","PeriodicalId":407031,"journal":{"name":"2016 International Conference on Control, Automation and Information Sciences (ICCAIS)","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining sparse appearance and Bayesian inference models for object tracking\",\"authors\":\"Zhengqiang Jiang, Benlian Xu, Shengrong Gong\",\"doi\":\"10.1109/ICCAIS.2016.7822439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a method that combines a sparse appearance model into the Bayesian inference framework for tracking pedestrians in video sequences captured by a fixed camera. We formulate sparse appearance model as a linear combination of a set of 4D smoothed colour histograms for each pedestrian. These colour histograms are computed for all detection windows with different confidence values from human detector proposed by Dalal and Triggs. Object tracking is carried out using the Bayesian inference method. For occlusion handling, we integrate the Kalman filter to get the potential region containing target's observation and then use maximum a posteriori estimation to get the most likely observation. We test our tracking method on the benchmark video datasets. Our experimental results show that our tracking method outperforms one without using occlusion handling technique and can handle partial occlusion and false negative errors from human detector.\",\"PeriodicalId\":407031,\"journal\":{\"name\":\"2016 International Conference on Control, Automation and Information Sciences (ICCAIS)\",\"volume\":\"126 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Control, Automation and Information Sciences (ICCAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAIS.2016.7822439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Control, Automation and Information Sciences (ICCAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIS.2016.7822439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种将稀疏外观模型与贝叶斯推理框架相结合的方法,用于跟踪固定摄像机拍摄的视频序列中的行人。我们将稀疏外观模型表述为每个行人的一组4D平滑颜色直方图的线性组合。这些颜色直方图计算了所有检测窗口的不同置信值从人类检测器提出的Dalal和Triggs。目标跟踪采用贝叶斯推理方法。在遮挡处理中,我们通过卡尔曼滤波得到包含目标观测值的潜在区域,然后使用最大后验估计得到最可能的观测值。我们在基准视频数据集上测试了我们的跟踪方法。实验结果表明,我们的跟踪方法优于不使用遮挡处理技术的跟踪方法,可以处理人类检测器的部分遮挡和假阴性误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combining sparse appearance and Bayesian inference models for object tracking
In this paper, we present a method that combines a sparse appearance model into the Bayesian inference framework for tracking pedestrians in video sequences captured by a fixed camera. We formulate sparse appearance model as a linear combination of a set of 4D smoothed colour histograms for each pedestrian. These colour histograms are computed for all detection windows with different confidence values from human detector proposed by Dalal and Triggs. Object tracking is carried out using the Bayesian inference method. For occlusion handling, we integrate the Kalman filter to get the potential region containing target's observation and then use maximum a posteriori estimation to get the most likely observation. We test our tracking method on the benchmark video datasets. Our experimental results show that our tracking method outperforms one without using occlusion handling technique and can handle partial occlusion and false negative errors from human detector.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiple model box-particle cardinality balanced multi-target multi-Bernoulli filter for multiple maneuvering targets tracking A new modelling and identification approach for guaranteed inclusion of a voltage source inverter's output voltages Multi region segmentation algorithm based on edge preserving for molten pool image Parameter weighting for multi-dimensional fuzzy inference systems Conditional marked point process-based crowd counting in sparsely and moderately crowded scenes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1