新西兰咏叹调强度、累积绝对速度、峰值增量地面速度和显著持续时间的地面运动模型

Z. Bullock
{"title":"新西兰咏叹调强度、累积绝对速度、峰值增量地面速度和显著持续时间的地面运动模型","authors":"Z. Bullock","doi":"10.5459/bnzsee.52.4.193-207","DOIUrl":null,"url":null,"abstract":"This study proposes empirical ground motion models for a variety of non-spectral intensity measures and significant durations in New Zealand. Equations are presented for the prediction of the median and maximum rotated components of Arias intensity, cumulative absolute velocity, cumulative absolute velocity above a 5 cm/s2 acceleration threshold, peak incremental ground velocity, and the 5% to 75% and 5% to 95% significant durations. Recent research has highlighted the usefulness of these parameters in both structural and geotechnical engineering. The New Zealand Strong Motion Database provides the database for regression and includes many earthquakes from all regions of New Zealand with the exceptions of Auckland and Northland, Otago and Southland, and Taranaki. The functional forms for the proposed models are selected using cross validation. The possible influence of effects not typically included in ground motion models for these intensity measures is considered, such as hanging wall effects and basin depth effects, as well as altered attenuation in the Taupo Volcanic Zone. The selected functional forms include magnitude and rupture depth scaling, attenuation with distance, and shallow site effects. Finally, the spatial autocorrelation of the models’ within-event residuals is considered and recommendations are made for developing correlated maps of intensity predictions stochastically.","PeriodicalId":343472,"journal":{"name":"Bulletin of the New Zealand National Society for Earthquake Engineering","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Ground motion models for Arias intensity, cumulative absolute velocity, peak incremental ground velocity, and significant duration in New Zealand\",\"authors\":\"Z. Bullock\",\"doi\":\"10.5459/bnzsee.52.4.193-207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes empirical ground motion models for a variety of non-spectral intensity measures and significant durations in New Zealand. Equations are presented for the prediction of the median and maximum rotated components of Arias intensity, cumulative absolute velocity, cumulative absolute velocity above a 5 cm/s2 acceleration threshold, peak incremental ground velocity, and the 5% to 75% and 5% to 95% significant durations. Recent research has highlighted the usefulness of these parameters in both structural and geotechnical engineering. The New Zealand Strong Motion Database provides the database for regression and includes many earthquakes from all regions of New Zealand with the exceptions of Auckland and Northland, Otago and Southland, and Taranaki. The functional forms for the proposed models are selected using cross validation. The possible influence of effects not typically included in ground motion models for these intensity measures is considered, such as hanging wall effects and basin depth effects, as well as altered attenuation in the Taupo Volcanic Zone. The selected functional forms include magnitude and rupture depth scaling, attenuation with distance, and shallow site effects. Finally, the spatial autocorrelation of the models’ within-event residuals is considered and recommendations are made for developing correlated maps of intensity predictions stochastically.\",\"PeriodicalId\":343472,\"journal\":{\"name\":\"Bulletin of the New Zealand National Society for Earthquake Engineering\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the New Zealand National Society for Earthquake Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5459/bnzsee.52.4.193-207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the New Zealand National Society for Earthquake Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5459/bnzsee.52.4.193-207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本研究提出了新西兰各种非频谱强度测量和显著持续时间的地面运动经验模型。给出了预测Arias强度、累积绝对速度、超过5 cm/s2加速度阈值的累积绝对速度、峰值增量地面速度、5% ~ 75%和5% ~ 95%显著持续时间的中位数和最大旋转分量的方程。最近的研究强调了这些参数在结构和岩土工程中的有用性。新西兰强震数据库提供了回归数据库,包括新西兰所有地区的许多地震,除了奥克兰和北地,奥塔哥和南地,以及塔拉纳基。使用交叉验证选择所提出模型的功能形式。考虑了这些强度测量通常未包括在地面运动模型中的效应可能产生的影响,例如上壁效应和盆地深度效应,以及陶波火山区衰减的改变。所选择的功能形式包括震级和破裂深度标度、随距离衰减和浅层场地效应。最后,考虑了模型事件内残差的空间自相关,并对随机开发强度预测相关图提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ground motion models for Arias intensity, cumulative absolute velocity, peak incremental ground velocity, and significant duration in New Zealand
This study proposes empirical ground motion models for a variety of non-spectral intensity measures and significant durations in New Zealand. Equations are presented for the prediction of the median and maximum rotated components of Arias intensity, cumulative absolute velocity, cumulative absolute velocity above a 5 cm/s2 acceleration threshold, peak incremental ground velocity, and the 5% to 75% and 5% to 95% significant durations. Recent research has highlighted the usefulness of these parameters in both structural and geotechnical engineering. The New Zealand Strong Motion Database provides the database for regression and includes many earthquakes from all regions of New Zealand with the exceptions of Auckland and Northland, Otago and Southland, and Taranaki. The functional forms for the proposed models are selected using cross validation. The possible influence of effects not typically included in ground motion models for these intensity measures is considered, such as hanging wall effects and basin depth effects, as well as altered attenuation in the Taupo Volcanic Zone. The selected functional forms include magnitude and rupture depth scaling, attenuation with distance, and shallow site effects. Finally, the spatial autocorrelation of the models’ within-event residuals is considered and recommendations are made for developing correlated maps of intensity predictions stochastically.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integrated Wellington region land transport resilience study Improving Wellington region’s resilience through integrated infrastructure resilience investments ‘End to end’ linkage structure for integrated impact assessment of infrastructure networks under natural hazards Strengthening heritage tunnels to enhance the resilience of Wellington’s transport network Resilience of infrastructure networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1