用于机器学习的光线追踪MIMO通道数据集应用于V2V通信

Daniel Suzuki, A. Oliveira, Luan Gonçalves, I. Correa, A. Klautau, Silvia Lins, Pedro Batista
{"title":"用于机器学习的光线追踪MIMO通道数据集应用于V2V通信","authors":"Daniel Suzuki, A. Oliveira, Luan Gonçalves, I. Correa, A. Klautau, Silvia Lins, Pedro Batista","doi":"10.1109/LATINCOM56090.2022.10000783","DOIUrl":null,"url":null,"abstract":"Machine learning has become a powerful tool for improving vehicle-to-vehicle (V2V) communication systems, and in general requires large datasets for model training and assessment. However, creating large and realistic datasets using field measurements is challenging due to the large bandwidths involved and usage of multiple antennas. Simulations have been widely adopted to circumvent the relative high cost of measurement campaigns. This paper presents the development of a new public dataset for research within V2V scenarios, of machine learning algorithms that require the MIMO channel for simulation or emulation. The adopted methodology relies on realistic simulations of vehicles traffic in 3D virtual worlds. The paper also analyses the influence of key parameters in the ray-tracing simulation with respect to the tradeoff between accuracy and computational cost. Lastly, the paper discusses results of beam-selection for V2V using machine learning and the presented dataset.","PeriodicalId":221354,"journal":{"name":"2022 IEEE Latin-American Conference on Communications (LATINCOM)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ray-Tracing MIMO Channel Dataset for Machine Learning Applied to V2V Communication\",\"authors\":\"Daniel Suzuki, A. Oliveira, Luan Gonçalves, I. Correa, A. Klautau, Silvia Lins, Pedro Batista\",\"doi\":\"10.1109/LATINCOM56090.2022.10000783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning has become a powerful tool for improving vehicle-to-vehicle (V2V) communication systems, and in general requires large datasets for model training and assessment. However, creating large and realistic datasets using field measurements is challenging due to the large bandwidths involved and usage of multiple antennas. Simulations have been widely adopted to circumvent the relative high cost of measurement campaigns. This paper presents the development of a new public dataset for research within V2V scenarios, of machine learning algorithms that require the MIMO channel for simulation or emulation. The adopted methodology relies on realistic simulations of vehicles traffic in 3D virtual worlds. The paper also analyses the influence of key parameters in the ray-tracing simulation with respect to the tradeoff between accuracy and computational cost. Lastly, the paper discusses results of beam-selection for V2V using machine learning and the presented dataset.\",\"PeriodicalId\":221354,\"journal\":{\"name\":\"2022 IEEE Latin-American Conference on Communications (LATINCOM)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Latin-American Conference on Communications (LATINCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LATINCOM56090.2022.10000783\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Latin-American Conference on Communications (LATINCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LATINCOM56090.2022.10000783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器学习已经成为改进车对车(V2V)通信系统的强大工具,通常需要大型数据集来进行模型训练和评估。然而,由于涉及大带宽和使用多个天线,使用现场测量创建大型和真实的数据集是具有挑战性的。模拟已被广泛采用,以规避相对较高的测量活动成本。本文介绍了一个新的公共数据集的开发,用于V2V场景下的研究,机器学习算法需要MIMO信道进行模拟或仿真。所采用的方法依赖于在三维虚拟世界中对车辆交通的真实模拟。本文还分析了射线追踪仿真中关键参数对精度和计算成本的影响。最后,本文讨论了利用机器学习和所提供的数据集进行V2V波束选择的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ray-Tracing MIMO Channel Dataset for Machine Learning Applied to V2V Communication
Machine learning has become a powerful tool for improving vehicle-to-vehicle (V2V) communication systems, and in general requires large datasets for model training and assessment. However, creating large and realistic datasets using field measurements is challenging due to the large bandwidths involved and usage of multiple antennas. Simulations have been widely adopted to circumvent the relative high cost of measurement campaigns. This paper presents the development of a new public dataset for research within V2V scenarios, of machine learning algorithms that require the MIMO channel for simulation or emulation. The adopted methodology relies on realistic simulations of vehicles traffic in 3D virtual worlds. The paper also analyses the influence of key parameters in the ray-tracing simulation with respect to the tradeoff between accuracy and computational cost. Lastly, the paper discusses results of beam-selection for V2V using machine learning and the presented dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-band Optical Network Assisted by GNPy: an Experimental Demonstration A Stacked Ensemble Classifier for an Intrusion Detection System in the Edge of IoT and IIoT Networks A Novel Short-term Vehicle Location Prediction using Temporal Graph Neural Networks LATINCOM 2022 Message from the General Chairs LATINCOM 2022 TOC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1