语义++ MapReduce:初步报告

Guigang Zhang, Jian Wang, Weixing Huang, C. Li, Yong Zhang, Chunxiao Xing
{"title":"语义++ MapReduce:初步报告","authors":"Guigang Zhang, Jian Wang, Weixing Huang, C. Li, Yong Zhang, Chunxiao Xing","doi":"10.1109/ICSC.2014.63","DOIUrl":null,"url":null,"abstract":"Big data processing is one of the hot scientific issues in the current social development. MapReduce is an important foundation for big data processing. In this paper, we propose a semantic++ MapReduce. This study includes four parts. (1) Semantic++ extraction and management for big data. We will do research about the automatically extracting, labeling and management methods for big data's semantic++ information. (2) SMRPL (Semantic++ MapReduce Programming Language). It is a declarative programming language which is close to the human thinking and be used to program for big data's applications. (3) Semantic++ MapReduce compilation methods. (4) Semantic++ MapReduce computing technology. It includes three parts. 1) Analysis of semantic++ index information of the data block, the description of the semantic++ index structure and semantic++ index information automatic loading method. 2) Analysis of all kinds of semantic++ operations such as semantic++ sorting, semantic++ grouping, semantic+++ merging and semantic++ query in the map and reduce phases. 3) Shuffle scheduling strategy based on semantic++ techniques. This paper's research will optimize the MapReduce and enhance its processing efficiency and ability. Our research will provide theoretical and technological accumulation for intelligent processing of big data.","PeriodicalId":175352,"journal":{"name":"2014 IEEE International Conference on Semantic Computing","volume":"97 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Semantic++ MapReduce: A Preliminary Report\",\"authors\":\"Guigang Zhang, Jian Wang, Weixing Huang, C. Li, Yong Zhang, Chunxiao Xing\",\"doi\":\"10.1109/ICSC.2014.63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Big data processing is one of the hot scientific issues in the current social development. MapReduce is an important foundation for big data processing. In this paper, we propose a semantic++ MapReduce. This study includes four parts. (1) Semantic++ extraction and management for big data. We will do research about the automatically extracting, labeling and management methods for big data's semantic++ information. (2) SMRPL (Semantic++ MapReduce Programming Language). It is a declarative programming language which is close to the human thinking and be used to program for big data's applications. (3) Semantic++ MapReduce compilation methods. (4) Semantic++ MapReduce computing technology. It includes three parts. 1) Analysis of semantic++ index information of the data block, the description of the semantic++ index structure and semantic++ index information automatic loading method. 2) Analysis of all kinds of semantic++ operations such as semantic++ sorting, semantic++ grouping, semantic+++ merging and semantic++ query in the map and reduce phases. 3) Shuffle scheduling strategy based on semantic++ techniques. This paper's research will optimize the MapReduce and enhance its processing efficiency and ability. Our research will provide theoretical and technological accumulation for intelligent processing of big data.\",\"PeriodicalId\":175352,\"journal\":{\"name\":\"2014 IEEE International Conference on Semantic Computing\",\"volume\":\"97 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Semantic Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSC.2014.63\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Semantic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSC.2014.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

大数据处理是当前社会发展中的热点科学问题之一。MapReduce是大数据处理的重要基础。在本文中,我们提出了一个语义++ MapReduce。本研究包括四个部分。(1)大数据语义++提取与管理。研究大数据语义++信息的自动提取、标注和管理方法。(2) SMRPL (Semantic++ MapReduce Programming Language)。它是一种接近人类思维的声明式编程语言,可用于大数据应用的编程。(3) Semantic++ MapReduce编译方法。(4) Semantic++ MapReduce计算技术。它包括三个部分。1)分析了数据块的语义++索引信息,描述了语义++索引结构和语义++索引信息自动加载方法。2)分析map和reduce阶段的各种语义++操作,如语义++排序、语义++分组、语义++合并、语义++查询。3)基于语义++技术的Shuffle调度策略。本文的研究将对MapReduce进行优化,提高其处理效率和处理能力。我们的研究将为大数据的智能处理提供理论和技术积累。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Semantic++ MapReduce: A Preliminary Report
Big data processing is one of the hot scientific issues in the current social development. MapReduce is an important foundation for big data processing. In this paper, we propose a semantic++ MapReduce. This study includes four parts. (1) Semantic++ extraction and management for big data. We will do research about the automatically extracting, labeling and management methods for big data's semantic++ information. (2) SMRPL (Semantic++ MapReduce Programming Language). It is a declarative programming language which is close to the human thinking and be used to program for big data's applications. (3) Semantic++ MapReduce compilation methods. (4) Semantic++ MapReduce computing technology. It includes three parts. 1) Analysis of semantic++ index information of the data block, the description of the semantic++ index structure and semantic++ index information automatic loading method. 2) Analysis of all kinds of semantic++ operations such as semantic++ sorting, semantic++ grouping, semantic+++ merging and semantic++ query in the map and reduce phases. 3) Shuffle scheduling strategy based on semantic++ techniques. This paper's research will optimize the MapReduce and enhance its processing efficiency and ability. Our research will provide theoretical and technological accumulation for intelligent processing of big data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fulgeo -- Towards an Intuitive User Interface for a Semantics-Enabled Multimedia Search Engine Refinement of Ontology-Constrained Human Pose Classification "Units of Meaning" in Medical Documents: Natural Language Processing Perspective Enhancing Multimedia Semantic Concept Mining and Retrieval by Incorporating Negative Correlations Cloud Resource Auto-scaling System Based on Hidden Markov Model (HMM)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1