基于人工神经网络的电磁器件设计优化

Osama A. Mohammed, D. C. Park, F. G. Uler
{"title":"基于人工神经网络的电磁器件设计优化","authors":"Osama A. Mohammed, D. C. Park, F. G. Uler","doi":"10.1109/ANN.1993.264321","DOIUrl":null,"url":null,"abstract":"A new method for the optimal design of the electromagnetic devices is presented. The method utilizes artificial neural networks (ANNs) in a design environment which encompasses numerical computations and expert's input for generating a variety of ANN training data. Results of two implementation examples are provided. The optimal design is obtained quickly (in a matter of milliseconds) once the ANNs are trained with a variety of geometrical topologies. The procedure explained in this paper can be used to provide good initial designs for use with iterative search techniques (currently used) to reduce searching time. This aspect is highly desirable to increase the effectiveness of the optimal design procedure.<<ETX>>","PeriodicalId":121897,"journal":{"name":"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems","volume":"2017 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Design optimization of electromagnetic devices using artificial neural networks\",\"authors\":\"Osama A. Mohammed, D. C. Park, F. G. Uler\",\"doi\":\"10.1109/ANN.1993.264321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new method for the optimal design of the electromagnetic devices is presented. The method utilizes artificial neural networks (ANNs) in a design environment which encompasses numerical computations and expert's input for generating a variety of ANN training data. Results of two implementation examples are provided. The optimal design is obtained quickly (in a matter of milliseconds) once the ANNs are trained with a variety of geometrical topologies. The procedure explained in this paper can be used to provide good initial designs for use with iterative search techniques (currently used) to reduce searching time. This aspect is highly desirable to increase the effectiveness of the optimal design procedure.<<ETX>>\",\"PeriodicalId\":121897,\"journal\":{\"name\":\"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems\",\"volume\":\"2017 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANN.1993.264321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANN.1993.264321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种电磁器件优化设计的新方法。该方法在设计环境中利用人工神经网络(ANN),包括数值计算和专家输入来生成各种人工神经网络训练数据。给出了两个实现实例的结果。一旦用各种几何拓扑训练人工神经网络,就可以快速(在几毫秒内)获得最佳设计。本文中解释的过程可用于提供与迭代搜索技术(目前使用)一起使用的良好初始设计,以减少搜索时间。这一方面对于提高优化设计过程的有效性是非常可取的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design optimization of electromagnetic devices using artificial neural networks
A new method for the optimal design of the electromagnetic devices is presented. The method utilizes artificial neural networks (ANNs) in a design environment which encompasses numerical computations and expert's input for generating a variety of ANN training data. Results of two implementation examples are provided. The optimal design is obtained quickly (in a matter of milliseconds) once the ANNs are trained with a variety of geometrical topologies. The procedure explained in this paper can be used to provide good initial designs for use with iterative search techniques (currently used) to reduce searching time. This aspect is highly desirable to increase the effectiveness of the optimal design procedure.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An adaptive fuzzy logic controller for AC-DC power systems Discrimination of partial discharge from noise in XLPE cable lines using a neural network Automation, with neural network based techniques, of short-term load forecasting at the Belgian national control centre Maximum electric power demand prediction by neural network Restoring current signals in real time using feedforward neural nets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1