马鲁古海峡柱状沉积物微生物群落多样性及垂直分布

Yan Wang, Fuchao C. Li, Jin Zhao, Huaxin Chen, Peng Jiang, Xue-Xi Tang
{"title":"马鲁古海峡柱状沉积物微生物群落多样性及垂直分布","authors":"Yan Wang, Fuchao C. Li, Jin Zhao, Huaxin Chen, Peng Jiang, Xue-Xi Tang","doi":"10.30564/JASR.V2I2.930","DOIUrl":null,"url":null,"abstract":"The sediment samples were collected from Maluku Strait at a depth of 1250 m, which is influenced by Mindanao Current and Indonesian Throughflow. Based on 16S rRNA clone libraries, the community structure and vertical distribution of archaea and bacteria were studied in a columnar sediment of 2m in length. From the surface sediment, 16S sequences were derived from fourteen bacterial phyla (Gammaproteobacteria, Planctomycetes, Alphaproteobacteria, Deltproteobacteria were dominant), but were limited to two groups of archaea: Crenarchaeota (99%) and Euryarchaeota (1%). Besides, 90% of the archaea clones were ammonia oxidation-related which indicated that the ammonia-oxidizing archaea might make a significant contribution to the chemosynthesis in the surface sediment. Contrastively in the bottom sediment, six bacterial phylogenetic groups were obtained (Gammaproteobacteria and Firmicutes were absolutely dominant), however no archaea 16S rRNA was detected. The microbial diversity of surface sediment was much higher than the bottom and seven unique bacterial phyla were obtained from two sediment respectively. The geochemical elements analysis revealed that the content of C, TOC and S in the surface sediment was much higher than the bottom, but the content of P is contrary. The microbial communities might be in response to the geochemical substance transfer and deposit influenced by the ocean current and it deserves further study compared with the other sediment samples in this area.","PeriodicalId":193824,"journal":{"name":"Journal of Atmospheric Science Research","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbial Community Diversity and Vertical Distribution in a Columnar Sediment of Maluku Strait\",\"authors\":\"Yan Wang, Fuchao C. Li, Jin Zhao, Huaxin Chen, Peng Jiang, Xue-Xi Tang\",\"doi\":\"10.30564/JASR.V2I2.930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sediment samples were collected from Maluku Strait at a depth of 1250 m, which is influenced by Mindanao Current and Indonesian Throughflow. Based on 16S rRNA clone libraries, the community structure and vertical distribution of archaea and bacteria were studied in a columnar sediment of 2m in length. From the surface sediment, 16S sequences were derived from fourteen bacterial phyla (Gammaproteobacteria, Planctomycetes, Alphaproteobacteria, Deltproteobacteria were dominant), but were limited to two groups of archaea: Crenarchaeota (99%) and Euryarchaeota (1%). Besides, 90% of the archaea clones were ammonia oxidation-related which indicated that the ammonia-oxidizing archaea might make a significant contribution to the chemosynthesis in the surface sediment. Contrastively in the bottom sediment, six bacterial phylogenetic groups were obtained (Gammaproteobacteria and Firmicutes were absolutely dominant), however no archaea 16S rRNA was detected. The microbial diversity of surface sediment was much higher than the bottom and seven unique bacterial phyla were obtained from two sediment respectively. The geochemical elements analysis revealed that the content of C, TOC and S in the surface sediment was much higher than the bottom, but the content of P is contrary. The microbial communities might be in response to the geochemical substance transfer and deposit influenced by the ocean current and it deserves further study compared with the other sediment samples in this area.\",\"PeriodicalId\":193824,\"journal\":{\"name\":\"Journal of Atmospheric Science Research\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric Science Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30564/JASR.V2I2.930\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric Science Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30564/JASR.V2I2.930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

沉积物样品采集于马鲁古海峡1250 m深度,受棉兰老海流和印尼通流影响。基于16S rRNA克隆文库,在长度为2m的柱状沉积物中研究了古细菌和细菌的群落结构和垂直分布。从表层沉积物中,得到了14个细菌门的16S序列(以γ变形菌门、plantomycetes、Alphaproteobacteria、Deltproteobacteria为主),但仅限于两组古细菌:Crenarchaeota(99%)和Euryarchaeota(1%)。此外,90%的古菌克隆与氨氧化有关,表明氨氧化古菌可能对表层沉积物的化学合成有重要贡献。相比之下,在底部沉积物中,获得了6个细菌系统发育类群(Gammaproteobacteria和Firmicutes占绝对优势),但未检测到古细菌16S rRNA。表层沉积物的微生物多样性远高于底层,分别获得了7个独特的细菌门。地球化学元素分析表明,表层沉积物中C、TOC和S含量远高于底层,而P含量则相反。微生物群落可能是对受洋流影响的地球化学物质转移和沉积的响应,值得与本区其他沉积物样品进行比较进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microbial Community Diversity and Vertical Distribution in a Columnar Sediment of Maluku Strait
The sediment samples were collected from Maluku Strait at a depth of 1250 m, which is influenced by Mindanao Current and Indonesian Throughflow. Based on 16S rRNA clone libraries, the community structure and vertical distribution of archaea and bacteria were studied in a columnar sediment of 2m in length. From the surface sediment, 16S sequences were derived from fourteen bacterial phyla (Gammaproteobacteria, Planctomycetes, Alphaproteobacteria, Deltproteobacteria were dominant), but were limited to two groups of archaea: Crenarchaeota (99%) and Euryarchaeota (1%). Besides, 90% of the archaea clones were ammonia oxidation-related which indicated that the ammonia-oxidizing archaea might make a significant contribution to the chemosynthesis in the surface sediment. Contrastively in the bottom sediment, six bacterial phylogenetic groups were obtained (Gammaproteobacteria and Firmicutes were absolutely dominant), however no archaea 16S rRNA was detected. The microbial diversity of surface sediment was much higher than the bottom and seven unique bacterial phyla were obtained from two sediment respectively. The geochemical elements analysis revealed that the content of C, TOC and S in the surface sediment was much higher than the bottom, but the content of P is contrary. The microbial communities might be in response to the geochemical substance transfer and deposit influenced by the ocean current and it deserves further study compared with the other sediment samples in this area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dense Fog in the Netherlands: Composition of the Nuclei that Contribute Most to the Droplet Number Concentration Assessment of the Intertropical Convergence Zone over the Atlantic Ocean through an Algorithm Based on Precipitation Air Pollution Risk Assessment Using GIS and Remotely Sensed Data in Kirkuk City, Iraq Relationship and Variability of Atmospheric Precipitation Characteristics in the North-West of Ukraine Variation of Dynamical Parameters with Upper Tropospheric Potential Vorticity in Tropical Cyclone over the North Indian Ocean Using WRF Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1