视觉注意引导视频对象分割

Hao Liang, Yihua Tan
{"title":"视觉注意引导视频对象分割","authors":"Hao Liang, Yihua Tan","doi":"10.1109/ICIEA.2019.8834292","DOIUrl":null,"url":null,"abstract":"Recently, video object segmentation (VOS) is a new challenging research direction from DAVIS competition. Carrying on with these researches, we propose a visual attention guided framework in video object segmentation, which includes four main components: segmentation network, visual encoder, spatial encoder and guide. The segmentation network predicts the object mask in the current video frame, and the visual guide force segmentation network to focus on the annotated object by visual information from visual encoder, and the spatial guide provide spatial location by spatial encoder from previous frame. Visual attention mechanism plays an important role in the model on capturing annotated object without online fine-tuning as previous models. This approach has an advantage over previous methods on accuracy and efficiency, especially avoid the online fine-tuning in those one-shot learning approaches.","PeriodicalId":311302,"journal":{"name":"2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Visual Attention Guided Video Object Segmentation\",\"authors\":\"Hao Liang, Yihua Tan\",\"doi\":\"10.1109/ICIEA.2019.8834292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, video object segmentation (VOS) is a new challenging research direction from DAVIS competition. Carrying on with these researches, we propose a visual attention guided framework in video object segmentation, which includes four main components: segmentation network, visual encoder, spatial encoder and guide. The segmentation network predicts the object mask in the current video frame, and the visual guide force segmentation network to focus on the annotated object by visual information from visual encoder, and the spatial guide provide spatial location by spatial encoder from previous frame. Visual attention mechanism plays an important role in the model on capturing annotated object without online fine-tuning as previous models. This approach has an advantage over previous methods on accuracy and efficiency, especially avoid the online fine-tuning in those one-shot learning approaches.\",\"PeriodicalId\":311302,\"journal\":{\"name\":\"2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA.2019.8834292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2019.8834292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

视频目标分割(VOS)是近年来来自DAVIS竞争的一个新的具有挑战性的研究方向。在此基础上,提出了一种基于视觉注意力引导的视频目标分割框架,该框架包括分割网络、视觉编码器、空间编码器和引导器四个主要组成部分。分割网络预测当前视频帧中的对象掩码,视觉引导通过视觉编码器的视觉信息迫使分割网络聚焦于标注对象,空间引导通过前一帧的空间编码器提供空间位置。视觉注意机制在该模型中发挥了重要作用,该模型不需要像以前的模型那样进行在线微调来捕获标注对象。该方法在精度和效率上优于以往的方法,尤其避免了一次性学习方法的在线微调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visual Attention Guided Video Object Segmentation
Recently, video object segmentation (VOS) is a new challenging research direction from DAVIS competition. Carrying on with these researches, we propose a visual attention guided framework in video object segmentation, which includes four main components: segmentation network, visual encoder, spatial encoder and guide. The segmentation network predicts the object mask in the current video frame, and the visual guide force segmentation network to focus on the annotated object by visual information from visual encoder, and the spatial guide provide spatial location by spatial encoder from previous frame. Visual attention mechanism plays an important role in the model on capturing annotated object without online fine-tuning as previous models. This approach has an advantage over previous methods on accuracy and efficiency, especially avoid the online fine-tuning in those one-shot learning approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Acoustic Sensors to Measure Speed of Oil Flow in Downhole Pipes Energy efficiency analysis of a liquefied natural gas and electric power combined transmission system Design and analysis of a novel tip-tilt stage with high precision for space applications Fault diagnosis of wind turbine bearing using synchrosqueezing wavelet transform and order analysis Smart Home Energy Management Optimization Method Considering ESS and PEV
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1