{"title":"低功耗网络中具有业务隔离的分布式自配置6TiSCH的实验验证","authors":"Fabrice Théoleyre, Georgios Z. Papadopoulos","doi":"10.1145/2988287.2989133","DOIUrl":null,"url":null,"abstract":"Time Slotted Channel Hopping (TSCH) is among the proposed Medium Access Control (MAC) layer protocols of the IEEE 802.15.4-2015 standard for low-power wireless communications in Internet of Things (IoT). TSCH aims to guarantee high network reliability by exploiting channel hopping and keeping the nodes time-synchronized at the MAC layer. In this paper, we focus on the traffic isolation issue, where several clients and applications may cohabit under the same wireless infrastructure without impacting each other. To this end, we present an autonomous version of 6TiSCH where each device uses only local information to select their timeslots. Moreover, we exploit 6TiSCH tracks to guarantee flow isolation, defining the concept of shared (best-effort) and dedicated (isolated) tracks. Our thorough experimental performance evaluation campaign, conducted over the open and large scale FIT IoT-LAB testbed (by employing the OpenWSN), highlight the interest of this solution to provide reliability and low delay while not relying on any centralized component.","PeriodicalId":158785,"journal":{"name":"Proceedings of the 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Experimental Validation of a Distributed Self-Configured 6TiSCH with Traffic Isolation in Low Power Lossy Networks\",\"authors\":\"Fabrice Théoleyre, Georgios Z. Papadopoulos\",\"doi\":\"10.1145/2988287.2989133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time Slotted Channel Hopping (TSCH) is among the proposed Medium Access Control (MAC) layer protocols of the IEEE 802.15.4-2015 standard for low-power wireless communications in Internet of Things (IoT). TSCH aims to guarantee high network reliability by exploiting channel hopping and keeping the nodes time-synchronized at the MAC layer. In this paper, we focus on the traffic isolation issue, where several clients and applications may cohabit under the same wireless infrastructure without impacting each other. To this end, we present an autonomous version of 6TiSCH where each device uses only local information to select their timeslots. Moreover, we exploit 6TiSCH tracks to guarantee flow isolation, defining the concept of shared (best-effort) and dedicated (isolated) tracks. Our thorough experimental performance evaluation campaign, conducted over the open and large scale FIT IoT-LAB testbed (by employing the OpenWSN), highlight the interest of this solution to provide reliability and low delay while not relying on any centralized component.\",\"PeriodicalId\":158785,\"journal\":{\"name\":\"Proceedings of the 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2988287.2989133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2988287.2989133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental Validation of a Distributed Self-Configured 6TiSCH with Traffic Isolation in Low Power Lossy Networks
Time Slotted Channel Hopping (TSCH) is among the proposed Medium Access Control (MAC) layer protocols of the IEEE 802.15.4-2015 standard for low-power wireless communications in Internet of Things (IoT). TSCH aims to guarantee high network reliability by exploiting channel hopping and keeping the nodes time-synchronized at the MAC layer. In this paper, we focus on the traffic isolation issue, where several clients and applications may cohabit under the same wireless infrastructure without impacting each other. To this end, we present an autonomous version of 6TiSCH where each device uses only local information to select their timeslots. Moreover, we exploit 6TiSCH tracks to guarantee flow isolation, defining the concept of shared (best-effort) and dedicated (isolated) tracks. Our thorough experimental performance evaluation campaign, conducted over the open and large scale FIT IoT-LAB testbed (by employing the OpenWSN), highlight the interest of this solution to provide reliability and low delay while not relying on any centralized component.