基于分割通道的深度哈希网络混合源遥感图像检索

Salayidin Sirajidin, H. Huo, T. Fang
{"title":"基于分割通道的深度哈希网络混合源遥感图像检索","authors":"Salayidin Sirajidin, H. Huo, T. Fang","doi":"10.1145/3430199.3430225","DOIUrl":null,"url":null,"abstract":"Traditional remote sensing image retrieval (RSIR) methods are generally based on images from a specific single source. As different sources and huge volumes of remote sensing images have been easily available nowadays, RSIR is facing the challenge of retrieving remote sensing images with different spectral and spatial information from different sources. Benefited from compelling image feature extraction ability of deep neural networks and efficient computing power and effective retrieval ability of hashing, deep hashing networks has become prevalent for image retrieval researches. In this paper, a deep hashing network based on split channels is proposed for hybrid source RSIR called split-channels triplet deep hashing networks(SCTDHNs). It takes skillfully splitting channels as input, and is mainly composed of a hybrid source deep hashing subnetwork for cross source images retrieval and single-source deep hashing sub-network for a multi-spectral image retrieval, and each of them achieves high retrieval performance. Furthermore, a novel trick for loss function is proposed, called increased intervals between dissimilar pairs during training stage that dramatically improves the retrieval performance. Extensive experiments implement on dual-source remote sensing data set demonstrate that proposed method yields better performance than existing state-of-art hybrid source retrieval methods as far as is known.","PeriodicalId":371055,"journal":{"name":"Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Hashing Network Based on Split Channels for Hybrid-Source Remote Sensing Image Retrieval\",\"authors\":\"Salayidin Sirajidin, H. Huo, T. Fang\",\"doi\":\"10.1145/3430199.3430225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional remote sensing image retrieval (RSIR) methods are generally based on images from a specific single source. As different sources and huge volumes of remote sensing images have been easily available nowadays, RSIR is facing the challenge of retrieving remote sensing images with different spectral and spatial information from different sources. Benefited from compelling image feature extraction ability of deep neural networks and efficient computing power and effective retrieval ability of hashing, deep hashing networks has become prevalent for image retrieval researches. In this paper, a deep hashing network based on split channels is proposed for hybrid source RSIR called split-channels triplet deep hashing networks(SCTDHNs). It takes skillfully splitting channels as input, and is mainly composed of a hybrid source deep hashing subnetwork for cross source images retrieval and single-source deep hashing sub-network for a multi-spectral image retrieval, and each of them achieves high retrieval performance. Furthermore, a novel trick for loss function is proposed, called increased intervals between dissimilar pairs during training stage that dramatically improves the retrieval performance. Extensive experiments implement on dual-source remote sensing data set demonstrate that proposed method yields better performance than existing state-of-art hybrid source retrieval methods as far as is known.\",\"PeriodicalId\":371055,\"journal\":{\"name\":\"Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3430199.3430225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3430199.3430225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统的遥感图像检索(RSIR)方法通常是基于特定单一来源的图像。随着遥感影像来源的多样化和海量化,RSIR面临着从不同来源获取具有不同光谱和空间信息的遥感影像的挑战。得益于深度神经网络强大的图像特征提取能力,以及哈希算法高效的计算能力和有效的检索能力,深度哈希网络在图像检索研究中已成为主流。本文提出了一种基于分裂通道的混合源RSIR深度哈希网络,称为分裂通道三重深度哈希网络(sctdhs)。该算法以巧妙分割信道为输入,主要由用于跨源图像检索的混合源深度哈希子网和用于多光谱图像检索的单源深度哈希子网组成,每个子网都具有较高的检索性能。此外,本文还提出了一种新的损失函数技巧,即在训练阶段增加不相似对之间的间隔,极大地提高了检索性能。在双源遥感数据集上进行的大量实验表明,该方法比目前已知的混合源检索方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Hashing Network Based on Split Channels for Hybrid-Source Remote Sensing Image Retrieval
Traditional remote sensing image retrieval (RSIR) methods are generally based on images from a specific single source. As different sources and huge volumes of remote sensing images have been easily available nowadays, RSIR is facing the challenge of retrieving remote sensing images with different spectral and spatial information from different sources. Benefited from compelling image feature extraction ability of deep neural networks and efficient computing power and effective retrieval ability of hashing, deep hashing networks has become prevalent for image retrieval researches. In this paper, a deep hashing network based on split channels is proposed for hybrid source RSIR called split-channels triplet deep hashing networks(SCTDHNs). It takes skillfully splitting channels as input, and is mainly composed of a hybrid source deep hashing subnetwork for cross source images retrieval and single-source deep hashing sub-network for a multi-spectral image retrieval, and each of them achieves high retrieval performance. Furthermore, a novel trick for loss function is proposed, called increased intervals between dissimilar pairs during training stage that dramatically improves the retrieval performance. Extensive experiments implement on dual-source remote sensing data set demonstrate that proposed method yields better performance than existing state-of-art hybrid source retrieval methods as far as is known.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D Modeling of Riverbeds Based on NURBS Algorithm Multi-view Learning for 3D LGE-MRI Left Atrial Cavity Segmentation Detection of Key Structure of Auroral Images Based on Weakly Supervised Learning People Counting Based on Multi-scale Region Adaptive Segmentation and Depth Neural Network A Survey of Research on Image Data Sources Forensics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1