多层体系结构中一致性异常的实时量化与分类

Kamal Zellag, Bettina Kemme
{"title":"多层体系结构中一致性异常的实时量化与分类","authors":"Kamal Zellag, Bettina Kemme","doi":"10.1109/ICDE.2011.5767927","DOIUrl":null,"url":null,"abstract":"While online transaction processing applications heavily rely on the transactional properties provided by the underlying infrastructure, they often choose to not use the highest isolation level, i.e., serializability, because of the potential performance implications of costly strict two-phase locking concurrency control. Instead, modern transaction systems, consisting of an application server tier and a database tier, offer several levels of isolation providing a trade-off between performance and consistency. While it is fairly well known how to identify the anomalies that are possible under a certain level of isolation, it is much more difficult to quantify the amount of anomalies that occur during run-time of a given application. In this paper, we address this issue and present a new approach to detect, in realtime, consistency anomalies for arbitrary multi-tier applications. As the application is running, our tool detect anomalies online indicating exactly the transactions and data items involved. Furthermore, we classify the detected anomalies into patterns showing the business methods involved as well as their occurrence frequency. We use the RUBiS benchmark to show how the introduction of a new transaction type can have a dramatic effect on the number of anomalies for certain isolation levels, and how our tool can quickly detect such problem transactions. Therefore, our system can help designers to either choose an isolation level where the anomalies do not occur or to change the transaction design to avoid the anomalies.","PeriodicalId":332374,"journal":{"name":"2011 IEEE 27th International Conference on Data Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Real-time quantification and classification of consistency anomalies in multi-tier architectures\",\"authors\":\"Kamal Zellag, Bettina Kemme\",\"doi\":\"10.1109/ICDE.2011.5767927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While online transaction processing applications heavily rely on the transactional properties provided by the underlying infrastructure, they often choose to not use the highest isolation level, i.e., serializability, because of the potential performance implications of costly strict two-phase locking concurrency control. Instead, modern transaction systems, consisting of an application server tier and a database tier, offer several levels of isolation providing a trade-off between performance and consistency. While it is fairly well known how to identify the anomalies that are possible under a certain level of isolation, it is much more difficult to quantify the amount of anomalies that occur during run-time of a given application. In this paper, we address this issue and present a new approach to detect, in realtime, consistency anomalies for arbitrary multi-tier applications. As the application is running, our tool detect anomalies online indicating exactly the transactions and data items involved. Furthermore, we classify the detected anomalies into patterns showing the business methods involved as well as their occurrence frequency. We use the RUBiS benchmark to show how the introduction of a new transaction type can have a dramatic effect on the number of anomalies for certain isolation levels, and how our tool can quickly detect such problem transactions. Therefore, our system can help designers to either choose an isolation level where the anomalies do not occur or to change the transaction design to avoid the anomalies.\",\"PeriodicalId\":332374,\"journal\":{\"name\":\"2011 IEEE 27th International Conference on Data Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 27th International Conference on Data Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2011.5767927\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 27th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2011.5767927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

虽然在线事务处理应用程序严重依赖于底层基础设施提供的事务属性,但它们通常选择不使用最高隔离级别,即序列化性,因为代价高昂的严格两阶段锁定并发控制可能会影响性能。相反,由应用服务器层和数据库层组成的现代事务系统提供了多个级别的隔离,在性能和一致性之间进行了权衡。虽然大家都知道如何识别在某种隔离级别下可能出现的异常,但是量化给定应用程序运行期间发生的异常数量要困难得多。在本文中,我们解决了这个问题,并提出了一种新的方法来实时检测任意多层应用程序的一致性异常。在应用程序运行时,我们的工具在线检测异常,准确地指示所涉及的事务和数据项。此外,我们将检测到的异常分类为显示所涉及的业务方法及其发生频率的模式。我们使用RUBiS基准来展示新事务类型的引入如何对某些隔离级别的异常数量产生巨大影响,以及我们的工具如何快速检测此类问题事务。因此,我们的系统可以帮助设计人员选择不发生异常的隔离级别,或者更改事务设计以避免异常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-time quantification and classification of consistency anomalies in multi-tier architectures
While online transaction processing applications heavily rely on the transactional properties provided by the underlying infrastructure, they often choose to not use the highest isolation level, i.e., serializability, because of the potential performance implications of costly strict two-phase locking concurrency control. Instead, modern transaction systems, consisting of an application server tier and a database tier, offer several levels of isolation providing a trade-off between performance and consistency. While it is fairly well known how to identify the anomalies that are possible under a certain level of isolation, it is much more difficult to quantify the amount of anomalies that occur during run-time of a given application. In this paper, we address this issue and present a new approach to detect, in realtime, consistency anomalies for arbitrary multi-tier applications. As the application is running, our tool detect anomalies online indicating exactly the transactions and data items involved. Furthermore, we classify the detected anomalies into patterns showing the business methods involved as well as their occurrence frequency. We use the RUBiS benchmark to show how the introduction of a new transaction type can have a dramatic effect on the number of anomalies for certain isolation levels, and how our tool can quickly detect such problem transactions. Therefore, our system can help designers to either choose an isolation level where the anomalies do not occur or to change the transaction design to avoid the anomalies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advanced search, visualization and tagging of sensor metadata Bidirectional mining of non-redundant recurrent rules from a sequence database Web-scale information extraction with vertex Characteristic sets: Accurate cardinality estimation for RDF queries with multiple joins Dynamic prioritization of database queries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1