超越词袋:局部聚合描述子的Fisher核向量快速视频分类

Ionut Mironica, Ionut Cosmin Duta, B. Ionescu, N. Sebe
{"title":"超越词袋:局部聚合描述子的Fisher核向量快速视频分类","authors":"Ionut Mironica, Ionut Cosmin Duta, B. Ionescu, N. Sebe","doi":"10.1109/ICME.2015.7177489","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a new video description framework that replaces traditional Bag-of-Words with a combination of Fisher Kernels (FK) and Vector of Locally Aggregated Descriptors (VLAD). The main contributions are: (i) a fast algorithm to densely extract global frame features, easier and faster to compute than spatio-temporal local features; (ii) replacing the traditional k-means based vocabulary with a Random Forest approach that allows significant speedup; (iii) use of a modified VLAD and FK representation to replace the classic Bag-of-Words and obtaining better performance. We show that our framework is highly general and is not dependent on a particular type of descriptor. It achieves state-of-the-art results in several classification scenarios.","PeriodicalId":146271,"journal":{"name":"2015 IEEE International Conference on Multimedia and Expo (ICME)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Beyond Bag-of-Words: Fast video classification with Fisher Kernel Vector of Locally Aggregated Descriptors\",\"authors\":\"Ionut Mironica, Ionut Cosmin Duta, B. Ionescu, N. Sebe\",\"doi\":\"10.1109/ICME.2015.7177489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce a new video description framework that replaces traditional Bag-of-Words with a combination of Fisher Kernels (FK) and Vector of Locally Aggregated Descriptors (VLAD). The main contributions are: (i) a fast algorithm to densely extract global frame features, easier and faster to compute than spatio-temporal local features; (ii) replacing the traditional k-means based vocabulary with a Random Forest approach that allows significant speedup; (iii) use of a modified VLAD and FK representation to replace the classic Bag-of-Words and obtaining better performance. We show that our framework is highly general and is not dependent on a particular type of descriptor. It achieves state-of-the-art results in several classification scenarios.\",\"PeriodicalId\":146271,\"journal\":{\"name\":\"2015 IEEE International Conference on Multimedia and Expo (ICME)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Multimedia and Expo (ICME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2015.7177489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2015.7177489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种新的视频描述框架,它将Fisher核(FK)和局部聚合描述子向量(VLAD)相结合,取代了传统的词袋描述框架。主要贡献有:(1)采用快速算法密集提取全局帧特征,比时空局部特征计算更简单、更快;(ii)用随机森林方法取代传统的基于k均值的词汇表,从而实现显著的加速;(iii)使用改进的VLAD和FK表示来取代经典的Bag-of-Words,获得更好的性能。我们展示了我们的框架是高度通用的,并且不依赖于特定类型的描述符。它在几个分类场景中实现了最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Beyond Bag-of-Words: Fast video classification with Fisher Kernel Vector of Locally Aggregated Descriptors
In this paper we introduce a new video description framework that replaces traditional Bag-of-Words with a combination of Fisher Kernels (FK) and Vector of Locally Aggregated Descriptors (VLAD). The main contributions are: (i) a fast algorithm to densely extract global frame features, easier and faster to compute than spatio-temporal local features; (ii) replacing the traditional k-means based vocabulary with a Random Forest approach that allows significant speedup; (iii) use of a modified VLAD and FK representation to replace the classic Bag-of-Words and obtaining better performance. We show that our framework is highly general and is not dependent on a particular type of descriptor. It achieves state-of-the-art results in several classification scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Affect-expressive hand gestures synthesis and animation VTouch: Vision-enhanced interaction for large touch displays Egocentric hand pose estimation and distance recovery in a single RGB image A hybrid approach for retrieving diverse social images of landmarks Spatial perception reproduction of sound events based on sound property coincidences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1