{"title":"图查询的性能预测","authors":"M. Namaki, K. Sasani, Yinghui Wu, A. Gebremedhin","doi":"10.1145/3068943.3068947","DOIUrl":null,"url":null,"abstract":"Query performance prediction has shown benefits to query optimization and resource allocation for relational databases. Emerging applications are leading to search scenarios where workloads with heterogeneous, structure-less analytical queries are processed over large-scale graph and network data. This calls for effective models to predict the performance of graph analytical queries, which are often more involved than their relational counterparts. In this paper, we study and evaluate predictive techniques for graph query performance prediction. We make several contributions. (1) We propose a general learning framework that makes use of practical and computationally efficient statistics from query scenarios and employs regression models. (2) We instantiate the framework with two routinely issued query classes, namely, reachability and graph pattern matching, that exhibit different query complexity. We develop modeling and learning algorithms for both query classes. (3) We show that our prediction models readily apply to resource-bounded querying, by providing a learning-based workload optimization strategy. Given a query workload and a time bound, the models select queries to be processed with a maximized query profit and a total cost within the bound. Using real-world graphs, we experimentally demonstrate the efficacy of our framework in terms of accuracy and the effectiveness of workload optimization.","PeriodicalId":345682,"journal":{"name":"Proceedings of the 2nd International Workshop on Network Data Analytics","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Performance Prediction for Graph Queries\",\"authors\":\"M. Namaki, K. Sasani, Yinghui Wu, A. Gebremedhin\",\"doi\":\"10.1145/3068943.3068947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Query performance prediction has shown benefits to query optimization and resource allocation for relational databases. Emerging applications are leading to search scenarios where workloads with heterogeneous, structure-less analytical queries are processed over large-scale graph and network data. This calls for effective models to predict the performance of graph analytical queries, which are often more involved than their relational counterparts. In this paper, we study and evaluate predictive techniques for graph query performance prediction. We make several contributions. (1) We propose a general learning framework that makes use of practical and computationally efficient statistics from query scenarios and employs regression models. (2) We instantiate the framework with two routinely issued query classes, namely, reachability and graph pattern matching, that exhibit different query complexity. We develop modeling and learning algorithms for both query classes. (3) We show that our prediction models readily apply to resource-bounded querying, by providing a learning-based workload optimization strategy. Given a query workload and a time bound, the models select queries to be processed with a maximized query profit and a total cost within the bound. Using real-world graphs, we experimentally demonstrate the efficacy of our framework in terms of accuracy and the effectiveness of workload optimization.\",\"PeriodicalId\":345682,\"journal\":{\"name\":\"Proceedings of the 2nd International Workshop on Network Data Analytics\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd International Workshop on Network Data Analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3068943.3068947\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Workshop on Network Data Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3068943.3068947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Query performance prediction has shown benefits to query optimization and resource allocation for relational databases. Emerging applications are leading to search scenarios where workloads with heterogeneous, structure-less analytical queries are processed over large-scale graph and network data. This calls for effective models to predict the performance of graph analytical queries, which are often more involved than their relational counterparts. In this paper, we study and evaluate predictive techniques for graph query performance prediction. We make several contributions. (1) We propose a general learning framework that makes use of practical and computationally efficient statistics from query scenarios and employs regression models. (2) We instantiate the framework with two routinely issued query classes, namely, reachability and graph pattern matching, that exhibit different query complexity. We develop modeling and learning algorithms for both query classes. (3) We show that our prediction models readily apply to resource-bounded querying, by providing a learning-based workload optimization strategy. Given a query workload and a time bound, the models select queries to be processed with a maximized query profit and a total cost within the bound. Using real-world graphs, we experimentally demonstrate the efficacy of our framework in terms of accuracy and the effectiveness of workload optimization.