粗粒度并行选择

L. Boxer
{"title":"粗粒度并行选择","authors":"L. Boxer","doi":"10.1142/S0129626421500031","DOIUrl":null,"url":null,"abstract":"We analyze the running time of the Saukas-Song algorithm for selection on a coarse grained multicomputer without expressing the running time in terms of communication rounds. This shows that while in the best case the Saukas-Song algorithm runs in asymptotically optimal time, in general it does not. We propose other algorithms for coarse grained selection that have optimal expected running time.","PeriodicalId":422436,"journal":{"name":"Parallel Process. Lett.","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coarse Grained Parallel Selection\",\"authors\":\"L. Boxer\",\"doi\":\"10.1142/S0129626421500031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze the running time of the Saukas-Song algorithm for selection on a coarse grained multicomputer without expressing the running time in terms of communication rounds. This shows that while in the best case the Saukas-Song algorithm runs in asymptotically optimal time, in general it does not. We propose other algorithms for coarse grained selection that have optimal expected running time.\",\"PeriodicalId\":422436,\"journal\":{\"name\":\"Parallel Process. Lett.\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parallel Process. Lett.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129626421500031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Process. Lett.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129626421500031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们在不以通信轮数表示运行时间的情况下,分析了Saukas-Song算法在粗粒度多计算机上进行选择的运行时间。这表明,虽然在最佳情况下,Saukas-Song算法在渐近最优时间内运行,但通常情况下它不会。我们提出了其他具有最佳预期运行时间的粗粒度选择算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Coarse Grained Parallel Selection
We analyze the running time of the Saukas-Song algorithm for selection on a coarse grained multicomputer without expressing the running time in terms of communication rounds. This shows that while in the best case the Saukas-Song algorithm runs in asymptotically optimal time, in general it does not. We propose other algorithms for coarse grained selection that have optimal expected running time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Note to Non-adaptive Broadcasting Semi-Supervised Node Classification via Semi-Global Graph Transformer Based on Homogeneity Augmentation 4-Free Strong Digraphs with the Maximum Size Relation-aware Graph Contrastive Learning The Normalized Laplacian Spectrum of Folded Hypercube with Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1