主题分割的声学指标

Julia Hirschberg, C. H. Nakatani
{"title":"主题分割的声学指标","authors":"Julia Hirschberg, C. H. Nakatani","doi":"10.21437/ICSLP.1998-582","DOIUrl":null,"url":null,"abstract":"The segmentation of text and speech into topics and subtopics is an important step in document interpretation. For text, formatting information, such as headings and paragraphing, is available to aid in this endeavor, although this information is by no means su cient. For speech, the task is even more di cult. We present results of the application of machine learning techniques to the automatic identi cation of intonational phrases beginning and ending 'topics' determined independently by annotators for two corpora | the Boston Directions Corpus and the Broadcast News (HUB-4) DARPA/NIST database.","PeriodicalId":117113,"journal":{"name":"5th International Conference on Spoken Language Processing (ICSLP 1998)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"88","resultStr":"{\"title\":\"Acoustic indicators of topic segmentation\",\"authors\":\"Julia Hirschberg, C. H. Nakatani\",\"doi\":\"10.21437/ICSLP.1998-582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The segmentation of text and speech into topics and subtopics is an important step in document interpretation. For text, formatting information, such as headings and paragraphing, is available to aid in this endeavor, although this information is by no means su cient. For speech, the task is even more di cult. We present results of the application of machine learning techniques to the automatic identi cation of intonational phrases beginning and ending 'topics' determined independently by annotators for two corpora | the Boston Directions Corpus and the Broadcast News (HUB-4) DARPA/NIST database.\",\"PeriodicalId\":117113,\"journal\":{\"name\":\"5th International Conference on Spoken Language Processing (ICSLP 1998)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"88\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"5th International Conference on Spoken Language Processing (ICSLP 1998)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21437/ICSLP.1998-582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"5th International Conference on Spoken Language Processing (ICSLP 1998)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/ICSLP.1998-582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 88

摘要

将文本和语音分割为主题和子主题是文件解释的重要步骤。对于文本,格式信息,如标题和分段,可以帮助完成这项工作,尽管这些信息绝不是足够的。对于演讲来说,任务更加艰巨。我们展示了机器学习技术在两个语料库(波士顿方向语料库和广播新闻(HUB-4) DARPA/NIST数据库)中由注释者独立确定的语调短语开始和结束“主题”的自动识别中的应用结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Acoustic indicators of topic segmentation
The segmentation of text and speech into topics and subtopics is an important step in document interpretation. For text, formatting information, such as headings and paragraphing, is available to aid in this endeavor, although this information is by no means su cient. For speech, the task is even more di cult. We present results of the application of machine learning techniques to the automatic identi cation of intonational phrases beginning and ending 'topics' determined independently by annotators for two corpora | the Boston Directions Corpus and the Broadcast News (HUB-4) DARPA/NIST database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assimilation of place in Japanese and dutch Articulatory analysis using a codebook for articulatory based low bit-rate speech coding Phonetic and phonological characteristics of paralinguistic information in spoken Japanese HMM-based visual speech recognition using intensity and location normalization Speech recognition via phonetically featured syllables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1