贝叶斯阴阳和谐学习下基于结构先验的局部因子分析模型的基因聚类

Lei Shi, Shikui Tu, L. Xu
{"title":"贝叶斯阴阳和谐学习下基于结构先验的局部因子分析模型的基因聚类","authors":"Lei Shi, Shikui Tu, L. Xu","doi":"10.1109/BIBM.2010.5706655","DOIUrl":null,"url":null,"abstract":"We propose a clustering algorithm based on a structural prior based Local Factor Analysis (spLFA) model under the Bayesian Ying-Yang harmony learning, which automatically determines the hidden dimensionalities during parameter learning, reduces the number of free parameters by projecting the mean vectors onto a low dimensional manifold, imposes the sparseness by a Normal-Jeffreys prior. Experiments on the diagnostic research dataset show that BYY-spLFA outperforms the k-means clustering and single-link hierarchical clustering. The experiments on a lymphoma cancer datset further indicate the BYY-spLFA is able to uncover the number of phenotypes correctly and cluster the phenotypes more accurately. In addition, we modify BYY-spLFA to implement supervised learning and preliminarily demonstrate its effectiveness on a Leukemia data for classification.","PeriodicalId":275098,"journal":{"name":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Gene clustering by structural prior based local factor analysis model under Bayesian Ying-Yang harmony learning\",\"authors\":\"Lei Shi, Shikui Tu, L. Xu\",\"doi\":\"10.1109/BIBM.2010.5706655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a clustering algorithm based on a structural prior based Local Factor Analysis (spLFA) model under the Bayesian Ying-Yang harmony learning, which automatically determines the hidden dimensionalities during parameter learning, reduces the number of free parameters by projecting the mean vectors onto a low dimensional manifold, imposes the sparseness by a Normal-Jeffreys prior. Experiments on the diagnostic research dataset show that BYY-spLFA outperforms the k-means clustering and single-link hierarchical clustering. The experiments on a lymphoma cancer datset further indicate the BYY-spLFA is able to uncover the number of phenotypes correctly and cluster the phenotypes more accurately. In addition, we modify BYY-spLFA to implement supervised learning and preliminarily demonstrate its effectiveness on a Leukemia data for classification.\",\"PeriodicalId\":275098,\"journal\":{\"name\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2010.5706655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2010.5706655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于结构先验的局部因子分析(spLFA)模型的聚类算法,该算法在参数学习过程中自动确定隐藏维数,通过将均值向量投影到低维流形上来减少自由参数的数量,通过Normal-Jeffreys先验来实现稀疏性。在诊断研究数据集上的实验表明,BYY-spLFA优于k-means聚类和单链接分层聚类。在一个淋巴瘤数据集上的实验进一步表明,BYY-spLFA能够正确地揭示表型的数量,并更准确地对表型进行聚类。此外,我们对BYY-spLFA进行了改进,实现了监督学习,并初步验证了其对白血病数据进行分类的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gene clustering by structural prior based local factor analysis model under Bayesian Ying-Yang harmony learning
We propose a clustering algorithm based on a structural prior based Local Factor Analysis (spLFA) model under the Bayesian Ying-Yang harmony learning, which automatically determines the hidden dimensionalities during parameter learning, reduces the number of free parameters by projecting the mean vectors onto a low dimensional manifold, imposes the sparseness by a Normal-Jeffreys prior. Experiments on the diagnostic research dataset show that BYY-spLFA outperforms the k-means clustering and single-link hierarchical clustering. The experiments on a lymphoma cancer datset further indicate the BYY-spLFA is able to uncover the number of phenotypes correctly and cluster the phenotypes more accurately. In addition, we modify BYY-spLFA to implement supervised learning and preliminarily demonstrate its effectiveness on a Leukemia data for classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A gene ranking method using text-mining for the identification of disease related genes alns — A searchable and filterable sequence alignment format A fast and noise-adaptive rough-fuzzy hybrid algorithm for medical image segmentation An accurate, automatic method for markerless alignment of electron tomographic images Unsupervised integration of multiple protein disorder predictors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1