将场景知识整合到事件表示的统一微调体系结构中

Jianming Zheng, Fei Cai, Honghui Chen
{"title":"将场景知识整合到事件表示的统一微调体系结构中","authors":"Jianming Zheng, Fei Cai, Honghui Chen","doi":"10.1145/3397271.3401173","DOIUrl":null,"url":null,"abstract":"Given an occurred event, human can easily predict the next event or reason the preceding event, yet which is difficult for machine to perform such event reasoning. Event representation bridges the connection and targets to model the process of event reasoning as a machine-readable format, which then can support a wide range of applications in information retrieval, e.g., question answering and information extraction. Existing work mainly resorts to a joint training to integrate all levels of training loss in event chains by a simple loss summation, which is easily trapped into a local optimum. In addition, the scenario knowledge in event chains is not well investigated for event representation. In this paper, we propose a unified fine-tuning architecture, incorporated with scenario knowledge for event representation, i.e., UniFA-S, which mainly consists of a unified fine-tuning architecture (UniFA) and a scenario-level variational auto-encoder (S-VAE). In detail, UniFA employs a multi-step fine-tuning to integrate all levels of training and S-VAE applies a stochastic variable to implicitly represent the scenario-level knowledge. We evaluate our proposal from two aspects, i.e., the representation and inference abilities. For the representation ability, our ensemble model UniFA-S can beat state-of-the-art baselines for two similarity tasks. For the inference ability, UniFA-S can outperform the best baseline, achieving 4.1%-8.2% improvements in terms of accuracy for various inference tasks.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Incorporating Scenario Knowledge into A Unified Fine-tuning Architecture for Event Representation\",\"authors\":\"Jianming Zheng, Fei Cai, Honghui Chen\",\"doi\":\"10.1145/3397271.3401173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given an occurred event, human can easily predict the next event or reason the preceding event, yet which is difficult for machine to perform such event reasoning. Event representation bridges the connection and targets to model the process of event reasoning as a machine-readable format, which then can support a wide range of applications in information retrieval, e.g., question answering and information extraction. Existing work mainly resorts to a joint training to integrate all levels of training loss in event chains by a simple loss summation, which is easily trapped into a local optimum. In addition, the scenario knowledge in event chains is not well investigated for event representation. In this paper, we propose a unified fine-tuning architecture, incorporated with scenario knowledge for event representation, i.e., UniFA-S, which mainly consists of a unified fine-tuning architecture (UniFA) and a scenario-level variational auto-encoder (S-VAE). In detail, UniFA employs a multi-step fine-tuning to integrate all levels of training and S-VAE applies a stochastic variable to implicitly represent the scenario-level knowledge. We evaluate our proposal from two aspects, i.e., the representation and inference abilities. For the representation ability, our ensemble model UniFA-S can beat state-of-the-art baselines for two similarity tasks. For the inference ability, UniFA-S can outperform the best baseline, achieving 4.1%-8.2% improvements in terms of accuracy for various inference tasks.\",\"PeriodicalId\":252050,\"journal\":{\"name\":\"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3397271.3401173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397271.3401173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

给定一个已经发生的事件,人类可以很容易地预测下一个事件或对前一个事件进行推理,而机器很难进行这样的事件推理。事件表示架起了连接的桥梁,目标是将事件推理过程建模为机器可读的格式,从而可以支持信息检索中的广泛应用,例如问答和信息提取。现有工作主要采用联合训练的方式,通过简单的损失求和来整合事件链中各级训练损失,容易陷入局部最优。此外,对于事件表示,事件链中的场景知识还没有得到很好的研究。本文提出了一种结合场景知识进行事件表示的统一微调架构,即UniFA- s,主要由统一微调架构(UniFA)和场景级变分自编码器(S-VAE)组成。具体而言,UniFA采用多步微调来整合所有级别的训练,S-VAE采用随机变量来隐式表示场景级知识。我们从表征能力和推理能力两个方面来评价我们的提议。对于表示能力,我们的集成模型UniFA-S可以在两个相似任务上击败最先进的基线。在推理能力方面,UniFA-S可以超越最佳基线,在各种推理任务上的准确率提高了4.1%-8.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Incorporating Scenario Knowledge into A Unified Fine-tuning Architecture for Event Representation
Given an occurred event, human can easily predict the next event or reason the preceding event, yet which is difficult for machine to perform such event reasoning. Event representation bridges the connection and targets to model the process of event reasoning as a machine-readable format, which then can support a wide range of applications in information retrieval, e.g., question answering and information extraction. Existing work mainly resorts to a joint training to integrate all levels of training loss in event chains by a simple loss summation, which is easily trapped into a local optimum. In addition, the scenario knowledge in event chains is not well investigated for event representation. In this paper, we propose a unified fine-tuning architecture, incorporated with scenario knowledge for event representation, i.e., UniFA-S, which mainly consists of a unified fine-tuning architecture (UniFA) and a scenario-level variational auto-encoder (S-VAE). In detail, UniFA employs a multi-step fine-tuning to integrate all levels of training and S-VAE applies a stochastic variable to implicitly represent the scenario-level knowledge. We evaluate our proposal from two aspects, i.e., the representation and inference abilities. For the representation ability, our ensemble model UniFA-S can beat state-of-the-art baselines for two similarity tasks. For the inference ability, UniFA-S can outperform the best baseline, achieving 4.1%-8.2% improvements in terms of accuracy for various inference tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MHM: Multi-modal Clinical Data based Hierarchical Multi-label Diagnosis Prediction Correlated Features Synthesis and Alignment for Zero-shot Cross-modal Retrieval DVGAN Models Versus Satisfaction: Towards a Better Understanding of Evaluation Metrics Global Context Enhanced Graph Neural Networks for Session-based Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1