Android安全策略的实用、正式合成和自动执行

H. Bagheri, Alireza Sadeghi, Reyhaneh Jabbarvand Behrouz, S. Malek
{"title":"Android安全策略的实用、正式合成和自动执行","authors":"H. Bagheri, Alireza Sadeghi, Reyhaneh Jabbarvand Behrouz, S. Malek","doi":"10.1109/DSN.2016.53","DOIUrl":null,"url":null,"abstract":"As the dominant mobile computing platform, Android has become a prime target for cyber-security attacks. Many of these attacks are manifested at the application level, and through the exploitation of vulnerabilities in apps downloaded from the popular app stores. Increasingly, sophisticated attacks exploit the vulnerabilities in multiple installed apps, making it extremely difficult to foresee such attacks, as neither the app developers nor the store operators know a priori which apps will be installed together. This paper presents an approach that allows the end-users to safeguard a given bundle of apps installed on their device from such attacks. The approach, realized in a tool, called SEPAR, combines static analysis with lightweight formal methods to automatically infer security-relevant properties from a bundle of apps. It then uses a constraint solver to synthesize possible security exploits, from which fine-grained security policies are derived and automatically enforced to protect a given device. In our experiments with over 4,000 Android apps, SEPAR has proven to be highly effective at detecting previously unknown vulnerabilities as well as preventing their exploitation.","PeriodicalId":102292,"journal":{"name":"2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Practical, Formal Synthesis and Automatic Enforcement of Security Policies for Android\",\"authors\":\"H. Bagheri, Alireza Sadeghi, Reyhaneh Jabbarvand Behrouz, S. Malek\",\"doi\":\"10.1109/DSN.2016.53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the dominant mobile computing platform, Android has become a prime target for cyber-security attacks. Many of these attacks are manifested at the application level, and through the exploitation of vulnerabilities in apps downloaded from the popular app stores. Increasingly, sophisticated attacks exploit the vulnerabilities in multiple installed apps, making it extremely difficult to foresee such attacks, as neither the app developers nor the store operators know a priori which apps will be installed together. This paper presents an approach that allows the end-users to safeguard a given bundle of apps installed on their device from such attacks. The approach, realized in a tool, called SEPAR, combines static analysis with lightweight formal methods to automatically infer security-relevant properties from a bundle of apps. It then uses a constraint solver to synthesize possible security exploits, from which fine-grained security policies are derived and automatically enforced to protect a given device. In our experiments with over 4,000 Android apps, SEPAR has proven to be highly effective at detecting previously unknown vulnerabilities as well as preventing their exploitation.\",\"PeriodicalId\":102292,\"journal\":{\"name\":\"2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSN.2016.53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSN.2016.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

作为占主导地位的移动计算平台,Android已经成为网络安全攻击的首要目标。这些攻击大多表现在应用程序级别,并通过利用从流行应用商店下载的应用程序中的漏洞。越来越多的复杂攻击利用了多个已安装应用的漏洞,这使得预测此类攻击变得极其困难,因为应用开发商和商店运营商都不知道哪些应用将被一起安装。本文提出了一种方法,允许最终用户保护安装在其设备上的给定应用程序包免受此类攻击。这种方法是在一个名为SEPAR的工具中实现的,它将静态分析与轻量级的形式化方法结合起来,从一堆应用程序中自动推断出与安全相关的属性。然后,它使用约束求解器综合可能的安全漏洞,从中派生并自动执行细粒度安全策略以保护给定设备。在我们对超过4000个Android应用程序的实验中,SEPAR已被证明在检测以前未知的漏洞以及防止它们被利用方面非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Practical, Formal Synthesis and Automatic Enforcement of Security Policies for Android
As the dominant mobile computing platform, Android has become a prime target for cyber-security attacks. Many of these attacks are manifested at the application level, and through the exploitation of vulnerabilities in apps downloaded from the popular app stores. Increasingly, sophisticated attacks exploit the vulnerabilities in multiple installed apps, making it extremely difficult to foresee such attacks, as neither the app developers nor the store operators know a priori which apps will be installed together. This paper presents an approach that allows the end-users to safeguard a given bundle of apps installed on their device from such attacks. The approach, realized in a tool, called SEPAR, combines static analysis with lightweight formal methods to automatically infer security-relevant properties from a bundle of apps. It then uses a constraint solver to synthesize possible security exploits, from which fine-grained security policies are derived and automatically enforced to protect a given device. In our experiments with over 4,000 Android apps, SEPAR has proven to be highly effective at detecting previously unknown vulnerabilities as well as preventing their exploitation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ELZAR: Triple Modular Redundancy Using Intel AVX (Practical Experience Report) DomainProfiler: Discovering Domain Names Abused in Future OSIRIS: Efficient and Consistent Recovery of Compartmentalized Operating Systems HSFI: Accurate Fault Injection Scalable to Large Code Bases Secure and Efficient Multi-Variant Execution Using Hardware-Assisted Process Virtualization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1